

Las Negras, 36°52′46″N 2°0′27″W

GRB hosts as a class of high-redshift galaxies

- > GRBs follow ongoing star formation (SN/GRB connection)
- > They are bright and detected at all redshifts
- > They select galaxies independently of their flux
- > Complementary study: emission and absorption

GRB hosts form a

population of high-redshift star-forming galaxies treasure trove for high-z SFR studies

GRB hosts are ubiquitous

Basic GRB host properties

Several works have studied different host samples

See also Le floc'h et al. 2003; fruchter et al. 2006; Wainwright et al. 2007 etc.

Hosts are often underluminous especially in the NIR

GRB host masses

GRB host metallicities

Low redshift, integrated, emission

High redshift, los, absorption

See also Stanek et al. (2006), Levesque et al. (2010) John Graham's talk

Gradients?

GRB 100316D @ z = 0.059

Levesque et al. (2010) See also Thöne et al., Christensen et al.

The GRB region has the lowest metallicity in the host system

Fundamental metallicity relation

Mannucci et al. (2010, 2011), Lara-López et al. (2010) But see talks by: Sebastián Sánchez and John Graham and Susanna Vergani

The role of selection effects

We know preferentially optically detected GRBs and ~50% GRBs have no optical (and no z!)

Dust can suppress optical emission, hence optically-based studies provide a biased view (e.g, against high metallicities)

Example: N_{H} distribution

Red: with redshift

Blue: no afterglow

See also Melandri et al. 2012, Campana et al. 2012

Dark GRBs & evolved hosts

For dark GRBs we can find more evolved (older, more massive, enriched) systems

Prototypical example (Hunt et al. 2011; Svensson et al. 2012):

GRB 080207: SFR ~ 400 M_{\odot} yr⁻¹ $M \sim 10^{11} M_{\odot}$ $A_{V} \sim 2$ mag

Krühler et al. (2011): Dark GRB hosts from GROND sample: redder, more luminous, more massive

ERO hosts: 020127, 030115, 080207, 120804A (Levan et al.; Rossi et al.; Berger et al.)

Super-solar metallicity hosts e.g. Savaglio et al. 2012, z=3.56, [Zn/H]=+0.29

First ALMA-detected GRB hosts (GRB 080607 at z=3) L_{IR} = a few x 10^{11} L_{\odot} SFR \sim 50 M_{\odot} yr⁻¹

Dark GRB hosts

23 highly-obscured (A_{V} > 1 mag) GRBs, host studied including optical, NIR, MIR Typical SFR and mass of GRB hosts is lower than of the typical SF galaxy

The TOUGH program

X-ray selected sample of GRB host galaxies

The Optically Unbiased GRB Host (TOUGH) survey

We study the host galaxies where GRBs exploded with two aims:

- Retrieving the missing information for the GRBs (e.g., redshift)
- Study the galaxy properties per se

Study based on a VLT large program (PI Hjorth) imaging + spectroscopy including X-shooter follow-up

69 GRB host galaxies with 0.033 < z < 6.295

6 core TOUGH papers + several in preparation

The TOUGH sample

TOUGH definition

- $> A_V < 0.5 \text{ mag}$
- \triangleright -70 < δ < 27
- > Prompt XRT
- > Long
- > Triggered
- > r_{XRT} < 2"

TOUGH = encircled

Finding hosts

Optically bright GRB

Optically dark GRB (only X-ray pos)

Many of them

Detection rate

R-band detection:

55/69 = 80%

Detection at z > 3: 5/13 = 38%

Magnitudes: R = 20-27

K-band detection: 30/69 = 43%

Malesani et al. 2013 in preparation

Host luminosities

Absolute magnitudes

Some very faint galaxies: GRBs only require 1 star!

Brighter hosts @ z~2?
But: evolution at high z

Compared to previous work g-16 (incomplete/biased samples) also bright (~L*) objects

Host colors

GRB hosts are mostly blue (star forming systems!)

Dark GRBs: redder hosts
Two extremely red objects
(EROs)

High-redshift GRB hosts

Tanvir et al. (2012) have looked with deep HST images for z > 5 GRB hosts, and found none.

Inference on the faint-end slope of the galaxy luminosity function

Trenti et al. (2012)

 M_{AB} > -15 present at z > 5 at 95%

Redshift campaign (1)

Goal to increase the redshift completeness, Initially (before TOUGH): 55%

Spectroscopy of hosts with R < 25Special credits to X-shooter (our "redshift-machine")

Jakobsson et al. (2012)

Redshift campaign (2)

Krühler et al. 2012 - arXiv:1205.4036

Redshift distribution (1)

- 16 new redshifts
- (3 fixed ones)
- 4 constrained ones
- 78% completeness

Median $\langle z \rangle = 2.23$

Redshift distribution (2)

Goal: constrain the cosmic star formation rate

See also Robertson & Ellis; Salvaterra et al.; Wanderman & Piran; Elliott et al.;

•••

Lyman α properties

Look for Ly α in emission for GRBs with 1.8 < z < 4.5

Milvang-

Radio properties

Radio survey of the TOUGH hosts at z < 1

12 systems

No host detected!

Constraints on obscured SFR

 $< 10-100 M_{\odot} yr^{-1}$

Michałowski et al. 2012 ApJ, 755, 85 See also Michał's talk

Metallicity project

Goal: investigate the role of metallicity in GRBs

X-shooter campaign to measure metallicity of all the TOUGH GRB hosts at z < 1 - ongoing project

Work in progress

Example: GRB host with approximately Solar metallicity from [N II]

The other side of the story - afterglow spectroscopy

VLT / X-shooter contribution

Metallicity probes for faint high-z galaxies

A case study - discovery of molecular Hydrogen

GRB 120815A at z=2.36 Metallicity $\sim 0.1 Z_{\odot}$ Absorption $A_{V}=0.15$ mag Depletion [Zn/Fe]=1 Column density $N(HI)=10^{21.95}$ cm⁻²

Krühler et al. 2013

Detection of Lyman-Werner bands of molecular Hydrogen ($f = 10^{-1}$)

Opening the way to "normal afterglows"

Opening the way to "normal afterglows"

Summary and outlook

- GRBs are promising tools to probe several aspects of the cosmic evolution.
- Necessary to base any inference on representative samples
- Evidence for preference for low metallicity still being amassed - need to draw quantitative constraints
- TOUGH and other surveys provide the starting point a
 more detailed characterization of the hosts is needed
- Especially multi-band approach required (long wavelength)

Should you ask a Question during Seminar?

