CheFlet polar bases for astronomical data analysis

<u>Yolanda Jiménez Teja</u> Txitxo Benítez Lozano Instituto de Astrofísica de Andalucía (CSIC) Departamento de Astronomía Extragaláctica E-mail: yojite@iaa.es

- Motivation
- Mathematical background

• Visualization

- Chebyshev-Fourier basis
- Non-vanishing wings
- Practical implementation
 - From the continuous to the discrete domain
 - Choice of the scale size
 - Choice of the number of coefficients
 - Elliptical and irregular galaxies
 - Spiral galaxies
- Examples: coefficients and partial reconstruction
- Practical applications

Outline

Motivation

Mathematical background

Visualization

Examples

Applications

The wings of the basis functions tend to vanish, so the light flux is bounded by the basis:

Chebyshev polynomial:
$$T_n(r) = \cos(n \cdot \arccos(r))$$

Outline

Motivation

Chebyshev rational function:

$$TL_n(r;L) = \cos\left(n \cdot \arccos\left(\frac{r-L}{r+L}\right)\right)$$

Visualization

Mathematical background

Examples

Applications

• It is a basis of the Hilbert space
$$L^2([0,+\infty)\times[-\pi,\pi],\langle\cdot,\cdot\rangle)$$
, with
 $\langle f,g \rangle = \int_{0}^{+\infty} \int_{-\pi}^{\pi} f(r,\theta) \overline{g(r,\theta)} \frac{1}{r+L} \sqrt{\frac{L}{r}} d\theta dr$
• A smooth function f can be decomposed into
 $f(r,\theta) = \frac{C}{2\pi^2} \sum_{n_2=-\infty}^{+\infty} \sum_{n_1=0}^{+\infty} f_{n_1n_2} TL_{n_1}(r) e^{in_2\theta}$
where
 $f_{n_1n_2} = \frac{C}{2\pi^2} \int_{-\pi}^{\pi} \int_{0}^{+\infty} f(z,\phi) TL_{n_1}(z) \frac{1}{z+L} \sqrt{\frac{L}{z}} e^{-in_2\theta} dz d\phi$

Conclusions

• These coefficients show an algebraic decay rate:

$$\left| f_{n_{1}n_{2}} \right| \leq \frac{A}{\left| n_{1} \right| \left| n_{2} \right|^{\frac{p+1}{2}}}$$

where *p* is related to the smoothness of the function *f*.

Motivation

Outline

Mathematical background

Visualization

Practical implementatio

Examples

Applications

Cheblet polar basis functions

Outline

Motivation

Mathematical background

Visualization

- C-F basis

└-Wings

Examples

Applications

					Real	compon	ents				
	*	\times	\mathbf{x}	×	*	*			*		
≤ n ₂ ≤4	0	$\mathbf{\mathbf{\mathbf{x}}}$									
					E					(3)	(8)
						\odot	•	0	0	\odot	0
		٠	0	\odot	•	0	\odot	0	0	0	0
4					0		0	0	0	\odot	0
		•			-				121	(3)	
	(\cdot)	$\mathbf{\mathbf{x}}$									
	*	\times	*	×	*	*	(X)		*		
$0 \le n_1 \le 10$											
-1		-0.8	-0.6	-0.4	-0.2	0	0.2	0.4	0.6	0.8	1

Cheblet polar basis functions

Outline

Motivation

Mathematical background

Visualization

-Wings

Examples

Applications

The wings of the basis functions tend to vanish, so the light flux is bounded by the basis:

Residual

Fourier-Chebyshev polar basis for astronomical image analysis

Fourier-Chebyshev polar basis for astronomical image analysis

Cheblet bases for galaxy modeling: a new tool for surveys

r

Object shape measurement

If we define

Outline

Motivation

Mathematical background

Visualization

$$I_{p}^{n_{1}} = \begin{cases} 2\sum_{j=0}^{n_{1}} {\binom{n_{1}}{j}} {(-1)^{j} L^{-j/2}} \frac{R^{p+j/2+1}}{2p+j+2} \operatorname{Re} \left[e^{in_{1}\pi/2} i^{n_{1}+j} {}_{2}F_{1} \left(n_{1}, 2p+j+2, 2p+j+3; \frac{-i\sqrt{R}}{\sqrt{L}} \right) \right], & \text{if } n_{1} > 0 \\ \frac{R^{p+1}}{p+1}, & \text{if } n_{1} = 0 \end{cases}$$

Practical implementation

then some morphological parameters can be calculated by means of the C-F coefficients:

Applications

Examples

• Flux:
$$F = 2\pi \sum_{n_1=0}^{+\infty} f_{n_1,0} I_1^{n_1}$$
 • Rms radius: $R^2 = \frac{2\pi}{F} \sum_{n_1=0}^{+\infty} f_{n_1,0} I_3^{n_1}$

• Centroid:
$$x_c + i y_c = \frac{2\pi}{F} \sum_{n_1=0}^{+\infty} f_{n_1,1} I_2^{n_1}$$
 • Ellipticity: $\varepsilon = \frac{\sum_{n_1=0}^{+\infty} f_{n_1,-2} I_3^{n_1}}{\sum_{n_1=0}^{+\infty} f_{n_1,0} I_3^{n_1}}$

Model adding: example

Clusters processing

One-by-one processing of

the objects, taking

• Method 1

different frames.

Outline

Motivation

Mathematical background

Visualization

Examples

Applications

Conclusions

• Method 2

Simultaneous processing of the objects, centering a grid in each object.

ABELL1703 (arXiv:1004.4660)

Not only galaxies but also arcs:

Original

Model

Residual

Outline Motivation	 Cheblet bases have proved to be a highly reliable method to analyze galaxy images, with better results than GALFIT and shapelet techniques. 						
wotivation							
Mathematical background	• Cheblet bases allow us to efficiently reproduce the morphology of the galaxies and measure their photometry.						
Visualization	 PSF deconvolution is easily implemented due to the bases 						
Examples	linearity.						
Applications	 Different morphological parameters can be directly inferred from Cheblet coefficients, with great accuracy. 						
Conclusions							
	 Not only single image processing is possible, but also cluster images, just overlapping grids with origin on the different object centers. 						

