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STOCHASTIC ALGORITHMS

Deterministic algorithm:

Input
1
               Output

1

Stochastic algorithm:

Input
1
 + random decision

Output
1

Output
2

Output
3

...

Example of probabilistic methods:

 Monte Carlo: the given results has a probability p<1 to be the correct solution. 
 Las Vegas: gives the correct solution or informs that it could not be obtained.

PROBLEM = GET OUTPUT FROM INPUT THROUGH AN ALGORITHM



  

STOCHASTIC METHODS WITH COMPUTERS? HOW?

Stochastic method = generating random number + performing operation

N ∞⇒ t∞
Computers make operations much faster. 
Computer are deterministic, no random numbers.
Solution: pseudo-random numbers.

PSEUDO-RANDOM NUMBERS

Finite (but large) lists of numbers generated by an algorithm.
No correlations beteween the numbers.

Examples:

 Numerical Recipes.
 MKL (optimized for iFort)
 http://www.psychicscience.org/random.aspx

ran2 (Numerical Recipes)
● For any Fortran or C compiler.
● The authors offer $1000 to the first person who finds a 
statistical test that proves that ran2 fails.

http://www.psychicscience.org/random.aspx


  

MONTE CARLO METHODS

Definition:

Iterative method including random 
decisions that gives the correct solution of 
a problem with a certain probability <1.

Named after the district of Monte Carlo (Monaco), European gambling capital.  

Monte Carlo Monte Carlo casino

Origin :

Study of the diffusion of 
neutrons in a fusion 
experiment (Los Álamos 
Laboratory).



  

TYPICAL MONTE CARLO METHOD

Input 
parameters
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∑
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CENTRAL LIMIT THEOREM

x = Any probability density function with average     and variance      . 
2

x1 , x2 ,... , xN = collection of N values sampled through    .

Then, the probability density distribution             , which elements are

                       , has a average of      and a variance of        . 

N  X 

X N =
1
N
∑
i=1

N

x i  
2

N

LAW OF LARGE NUMBERS

                              gaussian.  N ∞⇒N 



  

HOW TO CALCULATE THE ERROR IN A MONTE CARLO 
METHOD

N ∞

 Fit all calculated      to a gaussian distribution and obtain   . Let us call the 
correct solution of the problem   . Then:
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 If the accuracy is not enough, increase N (the error decreases as            ).
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RESULTS FROM MONTE CARLO SIMULATIONS HAVE ERRORS!
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MONTE CARLO EXAMPLE I: CALCULATING THE TV 
SHARE

Survey among a small group of people.
x

i
 = percentage of time that a certain TV channed is watched by a person.

X =
1
N
∑
i=1

N

xi= Monte Carlo estimation of the Share. 

The number of persons to participate in the survey is deduced by calculating  

 and assuming a tolerable error         .





N

MONTE CARLO EXAMPLE II: PLAYING GUESS WHO



  

MONTE CARLO EXAMPLE III: INTEGRATION

A number of points are uniformly randomly distributed over an area S. Then, the 
area under the curve is obtained by multiplying S by the number of points under 
the curve.

S



  

MONTE CARLO EXAMPLE III: DUST GRAIN 
ALIGNMENT BY THE SOLAR WIND

We assume that the crystalline structure of the 
grain absorbs the energy of the collision, so 
that the collision is completely inelastic.

Completely 
inelastic 
collision 

pi electrons 
protons,He+

Grains for testing:

● Rectangular prisms
● Density=3 g cm-3

●

● (A) Prolate 1:1:2
●

●

●

●

●

● (B) Oblate 2:2:1
●Same volume as the 
prolate.

0.1m×0.1m×0.2m

Li=m r i× pi

L=
1
N
∑
i=1

N

Li
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ALIGNMENT OF PROLATE GRAINS
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 MONTE CARLO MODEL OF RADIATIVE TRANSFER 

INCLUDING LINEAR AND CIRCULAR POLARIZATION 

y

x

φ

θ

MONTE CARLO EXAMPLE IV: RADIATIVE TRANSFER 
IN A COMET

 I i
0 ,Qi

0 ,U i
0 , V i

0

 I ,Q ,U , V 

 I ,Q ,U , V =
1
N
∑
i=1

N

 I i
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0
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DESCRIPTION OF THE RADIATIVE TRANSFER MODEL

W=1 at the beginning
Ends when W<WminPacket of photons (W) - Improves statistics.

- Reduces computation time.

Particles:
- Any size distribution.
- Any refractive index 

(even optically activity).
- Any geometry.
- Any orientation (aligned 

or not).

Any optical thickness of the 
coma (single or multiple 
scattering).

Inhomogeneous coma.  



  

EXACTITUDE OF THE MODEL

EDLP=−
Q
I 

For 108 packets of photons (~4 hours/core).



  

LAS VEGAS ALGORITHM

Definition:

Iterative method including random 
decisions that may either give the correct 
solution of a problem or inform that the 
solution has been not obtained.

RESULTS COMING FORM LAS VEGAS ALGORITHM DO NOT HAVE ERRORS

LAS VEGAS EXAMPLE I: ROCK, PAPER, 
SCISSORS,LIZARD, SPOCK



  

LAS VEGAS EXAMPLE II: 
LOTTERY 

LAS VEGAS EXAMPLE III: 
SINGLE FECUNDATION

LAS VEGAS EXAMPLE IV: 
SOLVING EQUATIONS

LAS VEGAS EXAMPLE V: 
OBTAINING A PASSWORD

By randomly exploring around the zone 
of parameters where we know that the 
solution is. 



  

Arbitrary maximum size imposed to clusters (dc) and the whole particle (dp). 

Maximum size            maximum distance between two monomers (realistic criterium). 

LAS VEGAS EXAMPLE Vi: BUILDING RANDOM 
AGGREGATES OF SPHERES



  

AGGREGATES OF SPHERES

A solution to the problem is always achieved in this case. 



  

MONTE CARLO COMPARED TO LAS VEGAS

 Monte Carlo methods always give a solution, along with a certain probability for this 
solution to be correct. Las Vegas either gives a correct solution to the problem or 
informs that no solution could be achieved.
 In problems solved by Monte Carlo methods, there is a unique solution, and the 
method converges to it while increasing the number N of iterations. Several correct 
solutions may exist for problems solved with Las Vegas algorithms.

SOME COMMENTS

Monte Carlo and Las Vegas codes requiere a large amount of memory and 
computational time to acomplish their tasks. However, Monte Carlo methods are 
able to exactly reproduce the microscopical elements of a complex system and 
reproduce their macroscopical properties. Personal computers have become fast 
enough for seriously considering this option when modelling a complex system. 



  

PARALLELIZE YOUR CODE

1 sequential program runs in 1 only core.

As Monte Carlo and Las Vegas codes basicly consist of a large do loop with a number N 
of independent iterations, two solutions to accelerate the calculations by one of these 
codes in a multicore computer could be:

 Run the Monte Carlo code for N/m iterations, where m is the number of cores, and make 
a summation of the results.
 Parallelize the code.

Classical method: MPI. New easier alternative: OpenMP (Fortran and C).

How it works: 

    PROGRAM OMP_SUM2
      INTEGER NMAX
      PARAMETER(NMAX=20000)
      INTEGER I
      REAL A(NMAX),C(NMAX)
      DO I = 1,NMAX
        A(I) = I * 1.0
        C(I)=1.
      ENDDO        
C$OMP PARALLEL shared(A,B,C,NMAX) private(I,J)
C$OMP DO
      DO I = 1,NMAX
         DO J=1,I
            C(I)= C(I)+A(J)
         END DO
      ENDDO
C$OMP END DO
C$OMP END PARALLEL      
      WRITE(*,*)C(NMAX)   
      END

gfortran -fopenmp omp_sum2.f -o omp_sum2

gfortran omp_sum2.f -o omp_sum2

Sequential omp_sum2

Parallel omp_sum2



  

CONCLUSIONS

 Monte Carlo & Las Vegas are two stochastic methods for the solution of problems.


 Monte Carlo gives a solution along with a certain probability of the solution to be 
correct.


 Las Vegas either gives the correct solution or informes that no solution could be 
obtained.


 Monte Carlo methods deal with problems with one single solution, and it reduces 
its error while the number of iterations increases.


 Monte Carlo codes are usefull to simulate the microscopical elements of a complex 
system, and derive the macroscopical properties of the system.


 Monte Carlo and Las Vegas codes require a large ammount of computational 
resoruces: time and memory.


 Monte Carlo and Las Vegas codes may run faster in a multicore computer by 
adding the OpenMP directives to the programs and using the corresponding flags 
when compiling.
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