MONTE CARLO METHODS

Daniel Guirado Rodriguez
CCD 09/12/2009




STOCHASTIC ALGORITHMS

PROBLEM = GET OUTPUT FROM INPUT THROUGH AN ALGORITHM

Deterministic algorithm:
Input, ==y Output,
Stochastic algorithm:
Output,
Input, + random decision ——» Output,
- Output,

Example of probabilistic methods:

= Monte Carlo: the given results has a probability p<1 to be the correct solution.
= Las Vegas: gives the correct solution or informs that it could not be obtained.



STOCHASTIC METHODS WITH COMPUTERS? HOW?

Stochastic method = generating random number + performing operation
N >00o=>¢t—> o

Computers make operations much faster.
Computer are deterministic, no random numbers.
Solution: pseudo-random numbers.

PSEUDO-RANDOM NUMBERS

Finite (but large) lists of numbers generated by an algorithm.
No correlations beteween the numbers.

Examples:

» Numerical Recipes.
» MKL (optimized for iFort)
= http://www.psychicscience.org/random.aspx

e For any Fortran or C compiler.
ran2 (Numerical Recipes) » The authors offer $1000 to the first person who finds a
statistical test that proves that ran2 fails.


http://www.psychicscience.org/random.aspx

MONTE CARLO METHODS

~ )
Definition:
lterative method including random
decisions that gives the correct solution of
a problem with a certain probability <1.
. J
- N Y. N
Named after the district of Monte Carlo (Monaco), European gambling capital. rigin:

Study of the diffusion of
neutrons in a fusion
experiment (Los Alamos
Laboratory).

Monte Carlo casino j




TYPICAL MONTE CARLO METHOD

Input + £ wm) X,

parameters

1 N
:NZ:

. J

CENTRAL LIMIT THEOREM

p (x)= Any probability density function with average p and variance o .
Xy, X,,..., X, = collection of N values sampled through p .

Then, the probablllty density distribution p v(X'), which elements are

Xy= N Z X, has a average of u and a variance of —_ ol
N

LAW OF LARGE NUMBERS

N — o0 = p, —gaussian.



HOW TO CALCULATE THE ERROR IN A MONTE CARLO

METHOD

(N —o0)

= Fit all calculated X, to a gaussian distribution and obtain o: Let us call the
correct solution of the problem p. Then:
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xelp-2-L u+2-L
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with p=+.90¢,

Xe|lu— , U+3 —
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= [f the accuracy is not enough, increase N (the error decreases as ~——).

VN

RESULTS FROM MONTE CARLO SIMULATIONS HAVE ERRORS!



MONTE CARLO EXAMPLE I: CALCULATING THE TV

SHARE

Survey among a small group of people.
x, = percentage of time that a certain TV channed is watched by a person.

N

X :% Z x;= Monte Carlo estimation of the Share.
i=1

The number of persons to participate in the survey is deduced by calculating O

and assuming a tolerable error o .

VN

MONTE CARLO EXAMPLE II: PLAYING GUESS WHO




MONTE CARLO EXAMPLE IlI: INTEGRATION

A number of points are uniformly randomly distributed over an area S. Then, the
area under the curve is obtained by multiplying S by the number of points under
the curve.



MONTE CARLO EXAMPLE IlI: DUST GRAIN

ALIGNMENT BY THE SOLAR WIND

Grains for testing:

® Pi electrons « Rectangular prisms
protons,He+ « Density=3 g cm
Qompl_etely e 0.1 umXx0.1umx0.2um
inelastic «(A) Prolate 1:1:2
collision
We assume that the crystalline structure of the ‘
grain absorbs the energy of the collision, so

that the collision is completely inelastic.

" R  (B) Oblate 2:2:1
L,=m7 X p, «Same volume as the

N
-1 - prolate.
L==—> L
N & ‘



ALIGNMENT OF PROLATE GRAINS
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ALIGNMENT OF OBLATE GRAINS
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MONTE CARLO EXAMPLE 1V: RADIATIVE TRANSFER

IN A COMET

>

(1,0.U.,V)

(1;,0;,U;.V})

(1,0.U. V)= (10,0, UL V)

i=1



DESCRIPTION OF THE RADIATIVE TRANSFER MODEL

INITIAL
PHOTONS

W =102

NUCLEUS

Packet of photons (W){

Improves statistics.

e

Particles:
- Any size distribution.
- Any refractive index
(even optically activity).
- Any geometry.

- Any orientation (aligned

or not).

Any optical thickness of the

coma (single or multiple
scattering).

Inhomogeneous coma.

- Reduces computation time.

W=1 at the beginning
Ends when W<Wmin

]




EXACTITUDE OF THE MODEL

EDLP (%)

30

20

10

Theoretical EDLP: -F12/F11

Calculated EDLP: MC model
(single scattering conditions — optical thickness=0.1)

(EDLPZ—Q)
I/

45 90 135
Scattering angle (deg)

For 108 packets of photons (~4 hours/core).




LAS VEGAS ALGORITHM

(

.

Definition:

lterative method including random
decisions that may either give the correct
solution of a problem or inform that the IR NEVADA
solution has been not obtained. Th—

RESULTS COMING FORM LAS VEGAS ALGORITHM DO NOT HAVE ERRORS

LAS VEGAS EXAMPLE I: ROCK, PAPER,
SCISSORS,LIZARD, SPOCK




LAS VEGAS EXAMPLE II: LAS VEGAS EXAMPLE IlI:
LOTTERY SINGLE FECUNDATION

LOTERIAS Y APUESTAS DEL ESTADO JUEVES + sABapo 117

La [&)] Primitiva

22 [10] 0] 0] [

PARTICIPA EN DOS SORTEOS MAL i }(
JUEVES + SABADO

i . Si desea jugar mas veces las mismas apuestas no doble, arrugue ni rompa este boleto .‘

LAS VEGAS EXAMPLE V:
LAS VEGAS EXAMPLE IV: OBTAINING A PASSWORD
SOLVING EQUATIONS

By randomly exploring around the zone
of parameters where we know that the
solution is.




LAS VEGAS EXAMPLE Vi: BUILDING RANDOM
AGGREGATES OF SPHERES

B 4 ™ 4 ™
| [ ®

@)

|| d

L \_ ) U : y

Arbitrary maximum size imposed to clusters (d.) and the whole particle (d).

Maximum size =) maximum distance between two monomers (realistic criterium).



AGGREGATES OF SPHERES

A solution to the problem is always achieved in this case.



MONTE CARLO COMPARED TO LAS VEGAS

= Monte Carlo methods always give a solution, along with a certain probability for this
solution to be correct. Las Vegas either gives a correct solution to the problem or
informs that no solution could be achieved.

= [n problems solved by Monte Carlo methods, there is a unique solution, and the
method converges to it while increasing the number N of iterations. Several correct
solutions may exist for problems solved with Las Vegas algorithms.

Monte Carlo and Las Vegas codes requiere a large amount of memory and
computational time to acomplish their tasks. However, Monte Carlo methods are
able to exactly reproduce the microscopical elements of a complex system and
reproduce their macroscopical properties. Personal computers have become fast
enough for seriously considering this option when modelling a complex system.



PARALLELIZE YOUR CODE

1 sequential program runs in 1 only core.

As Monte Carlo and Las Vegas codes basicly consist of a large do loop with a number N
of independent iterations, two solutions to accelerate the calculations by one of these
codes in a multicore computer could be:

» Run the Monte Carlo code for N/m iterations, where m is the number of cores, and make
a summation of the results.
= Parallelize the code.

Classical method: MPI. New easier alternative: Open/MP (Fortran and C).

How it works:

PROGRAM OMP_SUM2 gfortran omp_sum2.f -o omp_sum2
INTEGER NMAX o —

PARAMETER(NMAX=20000)
INTEGER |
REAL A(NMAX),C(NMAX)
D,?a') - ?%N;\_/'cf\ X Sequential omp_sum?2
Cc(l)=1.
ENDDO
C$OMP PARALLEL shared(A,B,C,NMAX) private(l,J)
C$OMP DO gfortran -fopenmp omp_sum2.f -0 omp_sum?2

DO | = 1,NMAX
DO J=1,l l

C(l)= C(I)*A(J)
END DO
ENDDO Parallel omp _sum2
C$OMP END DO -
C$OMP END PARALLEL
WRITE(*,*)C(NMAX)
END



CONCLUSIONS

= Monte Carlo & Las Vegas are two stochastic methods for the solution of problems.

= Monte Carlo gives a solution along with a certain probability of the solution to be
correct.

= Las Vegas either gives the correct solution or informes that no solution could be
obtained.

= Monte Carlo methods deal with problems with one single solution, and it reduces
its error while the number of iterations increases.

= Monte Carlo codes are usefull to simulate the microscopical elements of a complex
system, and derive the macroscopical properties of the system.

= Monte Carlo and Las Vegas codes require a large ammount of computational
resoruces: time and memory.

= Monte Carlo and Las Vegas codes may run faster in a multicore computer by
adding the OpenMP directives to the programs and using the corresponding flags
when compiling.
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