OpenMP Fortran Summary: Draft 1.0

Thisisa brief summary of the OpenMP Fortran syntax. To learn how OpenM P works, you'll
need to get a copy of the specification from www.openmp.org.

Directive format

sentinel directive-name [clause[clause]...]
where sentinel is either fixed source:
ISOMP | CSOMP | *$OMP
or free source form
ISOMP
Without loss of generality, we will usethe CSOMP senting in this summary.

Restrictions
. Fixed form sentinels must start in column 1 and have a space or zero in column 6 unless
the sentinel indicates a continuation line

. Free source sentinels can appear in any column aslong asit is preceded only by white
space. Continuation indicated with an ampersand on the last non-blank line.

Examples
Fixed source:
C$OMP PARALLEL DO
C$OMP+SHARED(A, B, C)
Free source:
ISOMP PARALLEL DO &
ISOMP SHARED(A, B, C)

COPYIN(LIST)
REDUCTION({OPERATOR|INTRINSIC}: LIST)

Restrictions

. The PARALLEL/END-PARRAL directive pair must appear in the sasme routinein the
executable section of the code.

. A STRUCTURED-BLOCK isaset of statements with a single entry at thetop and a
single exit at the bottom. Itisillegal to branch into or out of a structured block.

. Thereisan implied barrier at the END PARALLEL construct.

. At most one if clause can appear on the directive

Conditional compilation

sentinel [legal-Fortran-statement]

Wherethe sentinels vary depending on fixed source
1$|C$|*$

or free source
1$

parallel construct

C$OMP PARALLEL [clause[clause] ...]
STRUCTURED-BLOCK
C$OMP END PARALLEL

Where dauseis: IF (SCALAR-LOGICAL-EXPRESSION)
PRIVATE(LIST)

FIRSTPRIVATE(LIST

DEFAULT (PRIVATE | SHARED | NONE)

SHARED(LIST)

Work-sharing Constructs

DO directive

C3$OMP DO |[clause[[,] clause] ...]
do_loop
[C$OMP END DO [NOWAIT]]

Where clauseis PRIVATE(LIST)

FIRSTPRIVATE(LIST)
REDUCTION({OPERATOR|INTRINSIC}: LIST)
ORDERED

SCHEDULE(TYPE[, CHUNK_SIZE])
LASTPRIVATE(LIST)

Usage Note:
The schedul e clause defines how the iterations are mapped onto the team of threads:

. schedule(static[, chunk_size]): iterations are divided into
chunks of size chunk_size and assigned to the members of
the team in a round robin fashion. If chunk_size isn't
given, approximately equal sized chunks are assigned one
to each thread.

. schedule(dynamic[, chunk_size]): iterations are divided
into chunks of size chunk_size and assigned one-by-one
to the threads as they finish the previous chunk of
iterations. When no chunk_size is given, it defaults to
1.

. schedule(guided[, chunk_size)): iterations are assigned to
threads as with the dynamic schedule, but the chunks are
of decreasing sizes. The number of iterations in a chunk
start at some large value and decrease down to
chunk_size. If chunk_size equals 1, the size of each
chunk is approximately the number of unassigned
iterations divided by the number of threads in the team.

If chunk_size isn't specified, it defaults to one.

. schedul e(runtinme): The schedul e and chunk size are
determned at runtinme by setting the runtine variable
OW_SCHEDULE. If this variable is not set, the behavior
is inplenentati on dependent.

Restrictions:

. Work-sharing constructs must be encountered by all threadsina team or noneat all.

. CHUNK-SIZE must bean integer or an integer expression.

. The values of the loop control parameters must be the same for all the threadsin theteam
. The DO loop iteration variable must be of typeinteger.

. If used, the END-DO directive must appear immediately after the end of the loop.

. Only a single schedul e clause can appear on a DO directive

. Only asingle ordered clause can appear on aDO directive.

sections/section directive

C$OMP SECTIONS [clause] clause] ...]

[C$OMP SECTION]
STRUCTURED-BLOCK

[C$OMP SECTION
STRUCTURED-BLOCK]

C$OMP END SECTIONS [NOWAIT]

Where clauseis PRIVATE(LIST)
FIRSTPRIVATE(LIST)
LASTPRIVATE(LIST)

REDUCTION({OPERATOR|INTRINSIC}: LIST)

Restrictions:
. A SECTIONS directive must not be outside the lexical extent of the sections directive.

SINGLE directive

C$OMP SINGLE [clause[[,] clause] ...]
STRUCTURED-BLOCK
C$OMP END SINGLE [NOWAIT]

Where clauseis PRIVATE(LIST)

FIRSTPRIVATE(LIST)

Combined Parallel Work-sharing Constructs

PARALLEL DO directive

C$OMP PARALLEL DO [clause[clause] ...]
do-loop
[C$OMP END PARALLEL DO]

Where dauseis: IF (SCALAR-EXPRESSION)

PRIVATE(LIST)

FIRSTPRIVATE(LIST)

DEFAULT (SHARED | NONE)

SHARED(LIST)

COPYIN(LIST

SCHEDULE(TYPE[, CHUNK_SIZE])
ORDERED

LASTPRIVATE(LIST)
REDUCTION({OPERATOR|INTRINSIC}: LIST)

Usage Note:

The congtruct isthe sasmeasa PARALLEL construct immediately followed by a DO work
sharing directive.

Restrictions:

This construct shares regtrictions with the PARALLEL and DO directives.

parallel sections construct

#C$OMP PARALLEL SECTIONS [clause[[,]clause] ...]
[C$OMP SECTION]

structured-block
[C$OMP SECTION

structured-block]

C$OMP END PARALLEL SECTIONS

Where dauseis: IF (SCALAR-EXPRESSION)
PRIVATE(LIST)
FIRSTPRIVATE(LIST)
DEFAULT (SHARED | NONE)
SHARED(LIST)
COPYIN(LIST

LASTPRIVATE(LIST)

REDUCTI ON({ OPERATOR| | NTRI NSI G} : LI ST)

Restrictions:
This congtruct shares restrictions with the PARALLEL and SECTIONS constructs.

Master and Synchronization Constructs

MASTER directive
C$OVWP MASTER
STRUCTURED- BLOCK
C$OVP END MASTER

CRITICAL directive

C$OWP CRITI CAL [(nane)]
STRUCTURED- BLOCK
C$OWP END CRI TI CAL [(namne)]

Where nameis. An identifier

BARRIER directive
C$OVP BARRI ER

ATOMIC directive

C$OWP ATOM C
expression-stnt

Usage Note:

The atomic construct is semantically equivalent to critical statement. The single expression-
stmt must use one of the following forms:

X operator expr

expr operator Xx

intrinsic (x, expr)

intrinsic (expr, Xx)

X X X X
o

Where X is a scalar variable of intrinsic type.

expr is a scalar expression that does not
reference x.

intrinsicis one of MAX, MN, IAND, IOR or |EOR
operator is one of +, *, -, [/, AND, .OR, .EQV.
or . NEQV.

Restriction

All referencesto the storage location x are required to have the same type and type parameters.

FLUSH directive

C$OWP FLUSH [(list)]

Where List is a conma-separated list of variables
that need to be flushed

ORDERED directive

C$OVP ORDERED
St ruct ur ed- bl ock
C$OVP END ORDERED

Restrictions:

. An ordered directive must not bein the dynamic extent of a do directive that does not
have the ordered clause specified.

. Aniteration of aloop with a do construct must not execute the same ordered directive
more than once, and it must not execute more than one ordered directive.

Data Environment Constructs

THREADPRIVATE directive

C$OVP THREADPRI VATE(/ cp[, / cbl] ...)

Where cb is the name of the common block to be made
private to a thread.

Restrictions

. The THREADPORIVATE directive must appear after every declaration of athread
private common block.

. Only named common blocks can be made thread private.

. Itisillegal for a THREADPRIVATE common block or its constituent variablesto appear
inany clause other than a COPY IN clause. They are not affected by the DEFAULT
clause.

PRIVATE clause
PRIVATE(list)

Restrictions:

. Variablesthat are specified private on a parallel directive cannot be specified private
again on an enclosed work-sharing directive. As aresult, variablesthat are specified
private on a work-sharing directive must be specified shared in the enclosing parallel
region

FIRSTPRIVATE clause
FIRSTPRIVATE (list)

LASTPRIVATE clause
LASTPRI VATE(| i st)

SHARED clause

SHARED(| i

st)

DEFAULT clause
DEFAULT(PRI VATE |

Restrictions:

SHARED | NONE)

. Only a single default clause may be specified on a paralle directive.

REDUCTION clause

REDUCTI ON ({ oper at or
Where operator or intrinsic are one of:

+

*

. AND,
ez
. EQV.
. NEQV.
MAX
M N
| AND
| OR
| EOR

Usage Note:

Initi
Initi
Initi
Initi
Initi
Initi
Initi
Initi
Initi
Initi
Initi
Initi

al
al
al
al
al
al
al
al
al
al
al
al

| intrinsic}:list)

value = 0
value = 1
value = 0

val ue = . TRUE.

val ue = . FALSE.

val ue = . TRUE.

val ue = . FALSE.

val ue = Smal | est representabl e nunber
val ue = Largest representabl e nunber
value = Al bits on

value = 0

value = 0

A reduction istypically used in a statement with one of the following forms:

X
X
X

X
I F

Restrictions:

. Variablesthat appear in areduction clause must be SHARED in the enclosing context.
. Only variables with arithmetic type can appear in the list of variables for the reduction

clause.

X oper at

or

expr

expr op x (except for subtraction)
intrinsic (x, expr)

intrinsic (expr, Xx)

(X .LT. expr) X = expr

COPYIN clause

COPYIN (list)

where list containsthread private common blocks or variablesincluded in athread private
common block.

Data Environment Rules

An OpenMP Fortran program must adhere to the following rules and restrictions with respect
to data scope:

Sequential DO loop control variablesin the lexical extent of a PARALLEL region that
would otherwise be SHARED based on default rules, are automatically made private on
the PARALLEL directive.

Variablesthat are privatized in a parallel region cannot be privatized again in an enclosed
work-sharing directive. Asaresult, variablesthat appear in the PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTION clauses on a work-sharing
directive must have shared scopein the enclosing parallel region.

Assumed-si ze and assumed-shape arrays cannot be specified as PRIVATE,
FIRSTPRIVATE, or LASTPRIVATE.

Fortran pointersand all ocatabl e arrays can be declared as PRIVATE or SHARED but not
as FIRSTPRIVATE or LASTPRIVATE.

Within a parallé region, theinitial status of a private pointer isundefined.

Scope clauses apply only to variablesin the static extent of the directive on which the
clause appears, with the exception of variables passed as actual arguments. Local
variablesin called routines that don't have the SAVE attribute are PRIVATE. Common
blocks and modulesin called routinesin the dynamic extent of a parallel region always
have animplicit SHARED attribute, unlessthey are THREADPRIVATE common
blocks.

When a named common block is declared as PRIVATE, FIRSTPRIVATE or
LASTPRIVATE, none of its congtituent € ements may be declared in ancther scope
attribute. When individual members of a common block are privatized, the storage of the
specified variablesis no longer associated with the storage of the common block itself.
Variablesthat are not allowed in the PRIVATE and SAHARED clauses are not affected
by the DEFAULT(PRIVATE) or DEFAULT(SHAREDO clauses.

Clauses can be repeated as needed, but each variable can appear explicitly in only one
clause per directive, with the following exceptions: (1) a variable can be specified as both
FIRSTPRIVATE and LASTPRIVATE; (2) Variables affected by the DEFAULT clause
can be listed explicitly in a clause to override the default specification.

Directive binding

An OpenMP Fortran program must adhere to the following rules with respect to directive
binding:

The DO, SECTIONS, SINGLE, MASTER, and BARRIER directives bind to the
dynamically enclosing PARALLEL, if oneexists.

The ORDERED directive binds to the dynamically enclosing DO.

ATOMIC and CRICTICAL directives enforce access with respect to all threads, not just
the current team.

A directive can never bind to any directive outside the closest enclosing PARALLEL.

Directive Nesting

An OpenMP Fortran program must adhere to the foll owing rules with respect to the dynamic
nesting of directives:

A PARALLEL directive dynamically inside another PARALLEL directivelogically
establishes a new team, which is composed of only the current thread unless nested
paralldlism is enabled.

DO, SECTIONS, and SINGLE directivesthat bind to the same PARALLEL directiveare
not allowed to be nested oneinside the other. Furthermore, these directives are not
alowed in the dynamic extent of CRTICAL and MASTER directives.

BARRIER directives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, MASTER and CRITICAL directives

MASTER directives are not permitted in the dynamic extent of DO, SECTIONS, and
SIINGLE, directives.

ORDERED sectionsare not allowed in the dynamic extent of CRITICAL sections.

Any directive set that islegal when executed dynamically insidea PARALLEL regionis
also legal when executed outside a parallel region. When executed dynamically outsidea
user-specified paralle region, the directive is executed with respect to a team composed
of only the master thread.

Runtime Library Functions

In the description of these routines, scalar_integer_expr isa default scalar integer expression,
scalar_logical_expr isa default scalar logical expression, and var is of type integer and a KIND

large enough to hold an address.

Execution environment functions

SUBROUTI NE OMP_SET_NUM THREADS(scal ar _i nt eger _expr)

I NTEGER FUNCTI ON OVP_GET_NUM THREADS()

I NTEGER FUNCTI ON OVP_GET_MAX_THREADS()

I NTEGER FUNCTI ON OVP GET THREAD_NUM)

I NTEGER FUNCTI ON OMP_GET_NUM PROCS()

LOG CAL FUNCTI ON OVP_I N_PARALLEL()
SUBROUTI NE OMP_SET_SYNAM C(scal ar _| ogi cal
LOG CAL FUNCTI ON OVP_GET_DYNAM C()
SUBROUTI NE OVP_SET_NESTED (scal ar _| ogi cal
LOG CAL FUNCTI ON OWP_GET_NESTED()

Lock functions

SUBROUTI NE OVP_I NI T_LOCK (var)
SUBRQUTI NE OVP_DESTROY_LOCK(var)
SUBROUTI NE OVP_SET_LOCK(var)
SUBROUTI NE OVP_UNSET_LOCK(var)

LOG CAL FUNCTI ON OVP_TEST_LOCK (var)

_expr)

_expr)

Environment Variables

OWP_SCHEDULE "schedul e[,
OVP_NUM THREADS i nt
OVP_DYNAM C TRUE || FALSE
OVP_NESTED TRUE || FALSE

chunk_si ze] "

