
This is a brief summary of the OpenMP Fortran syntax. To learn how OpenMP works, you’ll
need to get a copy of the specification from www.openmp.org.

Directive format
sentinel directive-name [clause[clause]…]

where sentinel is either fixed source:
!$OMP | C$OMP | *$OMP

or free source form
!$OMP

Without loss of generality, we will use the C$OMP sentinel in this summary.

Restrictions

• Fixed form sentinels must start in column 1 and have a space or zero in column 6 unless
the sentinel indicates a continuation line

• Free source sentinels can appear in any column as long as it is preceded only by white
space. Continuation indicated with an ampersand on the last non-blank line.

Examples

Fixed source:
C$OMP PARALLEL DO

C$OMP+SHARED(A, B, C)

Free source:
 !$OMP PARALLEL DO &

 !$OMP SHARED(A, B, C)

Conditional compilation
sentinel [legal-Fortran-statement]

Where the sentinels vary depending on fixed source
!$ | C$ | *$

or free source
!$

parallel construct
C$OMP PARALLEL [clause[clause] …]

STRUCTURED-BLOCK

C$OMP END PARALLEL

Where clause is: IF (SCALAR-LOGICAL-EXPRESSION)

PRIVATE(LIST)

FIRSTPRIVATE(LIST

DEFAULT (PRIVATE | SHARED | NONE)

SHARED(LIST)

COPYIN(LIST)

REDUCTION({OPERATOR|INTRINSIC}: LIST)

Restrictions

• The PARALLEL/END-PARRAL directive pair must appear in the same routine in the
executable section of the code.

• A STRUCTURED-BLOCK is a set of statements with a single entry at the top and a
single exit at the bottom. It is illegal to branch into or out of a structured block.

• There is an implied barrier at the END PARALLEL construct.
• At most one if clause can appear on the directive

Work-sharing Constructs

DO directive
C$OMP DO [clause[[,] clause] …]

do_loop

[C$OMP END DO [NOWAIT]]

Where clause is: PRIVATE(LIST)

FIRSTPRIVATE(LIST)

REDUCTION({OPERATOR|INTRINSIC}: LIST)

ORDERED

SCHEDULE(TYPE[, CHUNK_SIZE])

LASTPRIVATE(LIST)

Usage Note:

The schedule clause defines how the iterations are mapped onto the team of threads:

• schedule(static[, chunk_size]): iterations are divided into
chunks of size chunk_size and assigned to the members of
the team in a round robin fashion. If chunk_size isn't
given, approximately equal sized chunks are assigned one
to each thread.

• schedule(dynamic[, chunk_size]): iterations are divided
into chunks of size chunk_size and assigned one-by-one
to the threads as they finish the previous chunk of
iterations. When no chunk_size is given, it defaults to
1.

• schedule(guided[, chunk_size]): iterations are assigned to
threads as with the dynamic schedule, but the chunks are
of decreasing sizes. The number of iterations in a chunk
start at some large value and decrease down to
chunk_size. If chunk_size equals 1, the size of each
chunk is approximately the number of unassigned
iterations divided by the number of threads in the team.
If chunk_size isn't specified, it defaults to one.

OpenMP Fortran Summary: Draft 1.0

• schedule(runtime): The schedule and chunk size are
determined at runtime by setting the runtime variable
OMP_SCHEDULE. If this variable is not set, the behavior
is implementation dependent.

Restrictions:

• Work-sharing constructs must be encountered by all threads in a team or none at all.
• CHUNK-SIZE must be an integer or an integer expression.
• The values of the loop control parameters must be the same for all the threads in the team
• The DO loop iteration variable must be of type integer.
• If used, the END-DO directive must appear immediately after the end of the loop.
• Only a single schedule clause can appear on a DO directive
• Only a single ordered clause can appear on a DO directive.

sections/section directive
C$OMP SECTIONS [clause[clause] …]

[C$OMP SECTION]

STRUCTURED-BLOCK

[C$OMP SECTION

STRUCTURED-BLOCK]

. . .

C$OMP END SECTIONS [NOWAIT]

Where clause is: PRIVATE(LIST)

FIRSTPRIVATE(LIST)

LASTPRIVATE(LIST)

REDUCTION({OPERATOR|INTRINSIC}: LIST)

Restrictions:

• A SECTIONS directive must not be outside the lexical extent of the sections directive.

SINGLE directive
C$OMP SINGLE [clause[[,] clause] …]

STRUCTURED-BLOCK

C$OMP END SINGLE [NOWAIT]

Where clause is: PRIVATE(LIST)

FIRSTPRIVATE(LIST)

Combined Parallel Work-sharing Constructs

PARALLEL DO directive
C$OMP PARALLEL DO [clause[clause] …]

do-loop

[C$OMP END PARALLEL DO]

Where clause is: IF (SCALAR-EXPRESSION)

PRIVATE(LIST)

FIRSTPRIVATE(LIST)

DEFAULT (SHARED | NONE)

SHARED(LIST)

COPYIN(LIST

SCHEDULE(TYPE[, CHUNK_SIZE])

ORDERED

LASTPRIVATE(LIST)

REDUCTION({OPERATOR|INTRINSIC}: LIST)

Usage Note:

The construct is the same as a PARALLEL construct immediately followed by a DO work
sharing directive.

Restrictions:

This construct shares restrictions with the PARALLEL and DO directives.

parallel sections construct
#C$OMP PARALLEL SECTIONS [clause[[,]clause] …]

[C$OMP SECTION]

structured-block

[C$OMP SECTION

structured-block]

. . .

C$OMP END PARALLEL SECTIONS

Where clause is: IF (SCALAR-EXPRESSION)

PRIVATE(LIST)

FIRSTPRIVATE(LIST)

DEFAULT (SHARED | NONE)

SHARED(LIST)

COPYIN(LIST

LASTPRIVATE(LIST)

REDUCTION({OPERATOR|INTRINSIC}: LIST)

Restrictions:

This construct shares restrictions with the PARALLEL and SECTIONS constructs.

Master and Synchronization Constructs

MASTER directive
C$OMP MASTER

STRUCTURED-BLOCK

C$OMP END MASTER

CRITICAL directive
C$OMP CRITICAL [(name)]

STRUCTURED-BLOCK

C$OMP END CRITICAL [(name)]

Where name is: An identifier

BARRIER directive
C$OMP BARRIER

ATOMIC directive
C$OMP ATOMIC

expression-stmt

Usage Note:

The atomic construct is semantically equivalent to critical statement. The single expression-
stmt must use one of the following forms:

x = x operator expr
x = expr operator x
x = intrinsic (x, expr)
x = intrinsic (expr, x)

Where x is a scalar variable of intrinsic type.

expr is a scalar expression that does not
reference x.

intrinsic is one of MAX, MIN, IAND, IOR or IEOR

operator is one of +, *, -, /, .AND, .OR., .EQV.
or .NEQV.

Restriction

All references to the storage location x are required to have the same type and type parameters.

FLUSH directive
C$OMP FLUSH [(list)]

Where List is a comma-separated list of variables
that need to be flushed

ORDERED directive
C$OMP ORDERED

Structured-block

C$OMP END ORDERED

Restrictions:

• An ordered directive must not be in the dynamic extent of a do directive that does not
have the ordered clause specified.

• An iteration of a loop with a do construct must not execute the same ordered directive
more than once, and it must not execute more than one ordered directive.

Data Environment Constructs

THREADPRIVATE directive
C$OMP THREADPRIVATE(/cp[,/cb/] …)

Where cb is the name of the common block to be made
private to a thread.

Restrictions

• The THREADPORIVATE directive must appear after every declaration of a thread
private common block.

• Only named common blocks can be made thread private.
• It is illegal for a THREADPRIVATE common block or its constituent variables to appear

in any clause other than a COPYIN clause. They are not affected by the DEFAULT
clause.

PRIVATE clause
PRIVATE(list)

Restrictions:

• Variables that are specified private on a parallel directive cannot be specified private
again on an enclosed work-sharing directive. As a result, variables that are specified
private on a work-sharing directive must be specified shared in the enclosing parallel
region

FIRSTPRIVATE clause
FIRSTPRIVATE(list)

LASTPRIVATE clause
LASTPRIVATE(list)

SHARED clause
SHARED(list)

DEFAULT clause
DEFAULT(PRIVATE | SHARED | NONE)

Restrictions:

• Only a single default clause may be specified on a parallel directive.

REDUCTION clause
REDUCTION ({operator | intrinsic}:list)

Where operator or intrinsic are one of:

+ Initial value = 0

* Initial value = 1

- Initial value = 0

.AND. Initial value = .TRUE.

.OR. Initial value = .FALSE.

.EQV. Initial value = .TRUE.

.NEQV. Initial value = .FALSE.

MAX Initial value = Smallest representable number

MIN Initial value = Largest representable number

IAND Initial value = All bits on

IOR Initial value = 0

IEOR Initial value = 0

Usage Note:

A reduction is typically used in a statement with one of the following forms:
x = x operator expr
x = expr op x (except for subtraction)
x = intrinsic (x, expr)
x = intrinsic (expr, x)
IF (X .LT. expr) X = expr

Restrictions:

• Variables that appear in a reduction clause must be SHARED in the enclosing context.
• Only variables with arithmetic type can appear in the list of variables for the reduction

clause.

COPYIN clause
COPYIN (list)

where list contains thread private common blocks or variables included in a thread private
common block.

Data Environment Rules
An OpenMP Fortran program must adhere to the following rules and restrictions with respect
to data scope:
• Sequential DO loop control variables in the lexical extent of a PARALLEL region that

would otherwise be SHARED based on default rules, are automatically made private on
the PARALLEL directive.

• Variables that are privatized in a parallel region cannot be privatized again in an enclosed
work-sharing directive. As a result, variables that appear in the PRIVATE,
FIRSTPRIVATE, LASTPRIVATE, and REDUCTION clauses on a work-sharing
directive must have shared scope in the enclosing parallel region.

• Assumed-size and assumed-shape arrays cannot be specified as PRIVATE,
FIRSTPRIVATE, or LASTPRIVATE.

• Fortran pointers and allocatable arrays can be declared as PRIVATE or SHARED but not
as FIRSTPRIVATE or LASTPRIVATE.

• Within a parallel region, the initial status of a private pointer is undefined.
• Scope clauses apply only to variables in the static extent of the directive on which the

clause appears, with the exception of variables passed as actual arguments. Local
variables in called routines that don’t have the SAVE attribute are PRIVATE. Common
blocks and modules in called routines in the dynamic extent of a parallel region always
have an implicit SHARED attribute, unless they are THREADPRIVATE common
blocks.

• When a named common block is declared as PRIVATE, FIRSTPRIVATE or
LASTPRIVATE, none of its constituent elements may be declared in another scope
attribute. When individual members of a common block are privatized, the storage of the
specified variables is no longer associated with the storage of the common block itself.

• Variables that are not allowed in the PRIVATE and SAHARED clauses are not affected
by the DEFAULT(PRIVATE) or DEFAULT(SHAREDO clauses.

• Clauses can be repeated as needed, but each variable can appear explicitly in only one
clause per directive, with the following exceptions: (1) a variable can be specified as both
FIRSTPRIVATE and LASTPRIVATE; (2) Variables affected by the DEFAULT clause
can be listed explicitly in a clause to override the default specification.

Directive binding
An OpenMP Fortran program must adhere to the following rules with respect to directive
binding:
• The DO, SECTIONS, SINGLE, MASTER, and BARRIER directives bind to the

dynamically enclosing PARALLEL, if one exists.
• The ORDERED directive binds to the dynamically enclosing DO.
• ATOMIC and CRICTICAL directives enforce access with respect to all threads, not just

the current team.
• A directive can never bind to any directive outside the closest enclosing PARALLEL.

Directive Nesting
An OpenMP Fortran program must adhere to the following rules with respect to the dynamic
nesting of directives:
• A PARALLEL directive dynamically inside another PARALLEL directive logically

establishes a new team, which is composed of only the current thread unless nested
parallelism is enabled.

• DO, SECTIONS, and SINGLE directives that bind to the same PARALLEL directive are
not allowed to be nested one inside the other. Furthermore, these directives are not
allowed in the dynamic extent of CRTICAL and MASTER directives.

• BARRIER directives are not permitted in the dynamic extent of DO, SECTIONS,
SINGLE, MASTER and CRITICAL directives

• MASTER directives are not permitted in the dynamic extent of DO, SECTIONS, and
SIJNGLE, directives.

• ORDERED sections are not allowed in the dynamic extent of CRITICAL sections.
• Any directive set that is legal when executed dynamically inside a PARALLEL region is

also legal when executed outside a parallel region. When executed dynamically outside a
user-specified parallel region, the directive is executed with respect to a team composed
of only the master thread.

Runtime Library Functions
In the description of these routines, scalar_integer_expr is a default scalar integer expression,
scalar_logical_expr is a default scalar logical expression, and var is of type integer and a KIND
large enough to hold an address.

Execution environment functions
SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expr)
INTEGER FUNCTION OMP_GET_NUM_THREADS()
INTEGER FUNCTION OMP_GET_MAX_THREADS()
INTEGER FUNCTION OMP_GET_THREAD_NUM()
INTEGER FUNCTION OMP_GET_NUM_PROCS()
LOGICAL FUNCTION OMP_IN_PARALLEL()
SUBROUTINE OMP_SET_SYNAMIC(scalar_logical_expr)
LOGICAL FUNCTION OMP_GET_DYNAMIC()
SUBROUTINE OMP_SET_NESTED (scalar_logical_expr)
LOGICAL FUNCTION OMP_GET_NESTED()

Lock functions
SUBROUTINE OMP_INIT_LOCK (var)
SUBROUTINE OMP_DESTROY_LOCK(var)
SUBROUTINE OMP_SET_LOCK(var)
SUBROUTINE OMP_UNSET_LOCK(var)
LOGICAL FUNCTION OMP_TEST_LOCK (var)

Environment Variables
OMP_SCHEDULE "schedule[, chunk_size]"
OMP_NUM_THREADS int
OMP_DYNAMIC TRUE || FALSE
OMP_NESTED TRUE || FALSE

