Index

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Foreword</td>
</tr>
<tr>
<td>8</td>
<td>IAA Organizational Chart</td>
</tr>
<tr>
<td>10</td>
<td>IAA overview</td>
</tr>
<tr>
<td>12</td>
<td>The IAA Severo Ochoa Programme</td>
</tr>
<tr>
<td>14</td>
<td>Research groups</td>
</tr>
<tr>
<td>15</td>
<td>Solar Physics</td>
</tr>
<tr>
<td>16</td>
<td>Planets & minor bodies</td>
</tr>
<tr>
<td>17</td>
<td>Terrestrial and planetary atmospheres</td>
</tr>
<tr>
<td>18</td>
<td>Low-mass stars & exoplanets</td>
</tr>
<tr>
<td>19</td>
<td>Stellar variability</td>
</tr>
<tr>
<td>20</td>
<td>ARAE</td>
</tr>
<tr>
<td>21</td>
<td>HETH</td>
</tr>
<tr>
<td>22</td>
<td>Stellar systems</td>
</tr>
<tr>
<td>23</td>
<td>AGN Jets</td>
</tr>
<tr>
<td>24</td>
<td>Physics of the Interstellar medium</td>
</tr>
<tr>
<td>25</td>
<td>Theoretical Gravitation & Cosmology</td>
</tr>
<tr>
<td>26</td>
<td>Galaxy Evolution</td>
</tr>
<tr>
<td>28</td>
<td>UDIT</td>
</tr>
<tr>
<td>30</td>
<td>Calar Alto Observatory</td>
</tr>
<tr>
<td>34</td>
<td>Sierra Nevada Observatory</td>
</tr>
<tr>
<td>36</td>
<td>The ESFRI initiatives</td>
</tr>
<tr>
<td>38</td>
<td>Sky Quality Office</td>
</tr>
<tr>
<td>40</td>
<td>Public Outreach</td>
</tr>
<tr>
<td>42</td>
<td>Publications</td>
</tr>
<tr>
<td>44</td>
<td>Workshops & meetings</td>
</tr>
<tr>
<td>46</td>
<td>Gender actions</td>
</tr>
<tr>
<td>48</td>
<td>Awards</td>
</tr>
<tr>
<td>49</td>
<td>Funding</td>
</tr>
<tr>
<td>Annexes</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Staff</td>
</tr>
<tr>
<td>54</td>
<td>Ongoing projects</td>
</tr>
<tr>
<td>59</td>
<td>Education & teaching</td>
</tr>
<tr>
<td>63</td>
<td>Press releases</td>
</tr>
<tr>
<td>68</td>
<td>List of publications</td>
</tr>
<tr>
<td>86</td>
<td>Visiting scientists</td>
</tr>
<tr>
<td>88</td>
<td>In memoriam</td>
</tr>
</tbody>
</table>

The IAA-CSIC 2021 Annual Report is the result of a collective process of the people who make up the Instituto de Astrofísica de Andalucía. We would like to thank all of them for their dedication and willingness to capture the best possible picture of what we do and what we work for.

1st Edition: October 2022

Editor: IAA-CSIC
Coordinators: José Francisco Gómez & Isabel Márquez
Design: Tarma, estudio gráfico
Cover images: HST and MEGARA/GTC composed image of the Planetary Nebula NGC2392 (Guerrero et al. 2021)

Printing: Lozano impresores
Legal dep.: Gr-1832-2021

This work may be reproduced in whole or in part by any means or process, known or unknown, including reprography and computer processing, provided that the source and owners are properly acknowledged.

For any communication related to this work, please contact:
Instituto de Astrofísica de Andalucía
Glorieta de la Astronomía s/n (18008) Granada.
Tel.: +34 958 12 13 11
severoochoa@iaa.es
The year 2021 offered an excellent opportunity to make a review of the scientific and technical life of the IAA. On the one hand, we were facing the final year of the “Severo Ochoa – IAA” program (July 2018 – June 2022). The Severo Ochoa Excellence award has had a transformative impact on the IAA in terms of attracting international talent, rejuvenating our staff, increasing our output, implementing a novel training program, reinforcing work on strategic infrastructure, international visibility and scientific outreach. At the end of 2020, the mid-term report was presented obtaining the highest grade. On the other hand, it was the time to define the new strategic plan for our center, within the framework of the “CSIC Action Plan 2022-2025”. We had a good starting point: the IAA has a strong track record, producing a sustained, large number of high impact work. From a technical side, we contribute to almost every major recent space Solar System mission and participate in state-of-the-art instruments for ground-based telescopes. Moreover, the IAA is recognized as an international center of reference for radio astronomy, with critical involvement in the Event Horizon Telescope and the commitment to establish an SKA Regional Centre (SRC).

We defined a set of strategic lines on which we will focus our activity in the coming years: leading multidisciplinary studies of exoplanetary systems and their architecture, deepening the study of the star-planet interaction and exoplanet atmospheres, using our background in radiative transfer models in non-ETL conditions; continuing our leadership in the EHT and in the future ngEHT to obtain the first movies of the supermassive black hole at the center of our Galaxy; exploiting our unique capabilities for the study of star formation and nuclear activity over the full range of relevant physical scales and distances; obtaining an unprecedented 3D map of the universe, via the J-PAS survey, relevant for the study of galaxy formation and evolution; becoming one of the nodes of the SRCs in Europe addressing the most ambitious challenge in radio frequency astronomical observations; leading at IP/co-IP level frontier instrumental projects for space exploration as Comet Interceptor, EnVision, Vigil/Lagrange and SUNRISE 3; strengthening our scientific and technical leaderships in the ESFRI projects in Astronomy; leading the development of the new integral field spectrograph for the CAHA 3.5m...

FAR, among others) with high resolution studies of
(MeerKAT, ASKAP, LO-

the heart of the nearby galaxy Centaurus A

central black hole

the black hole in M87

understanding giant magnetar flares. With the,
during peak energy, which are a crucial component in

tail measuring distinct oscillations in its brightness

An eruption of a magnetar

tem.

a glimpse into the possible future of the Solar Sys-

was discovered, providing

the other hand, a system formed by

radio light curve and the orbital period, provided

of Proxima Centauri

radio emission

was observed with data from MEGARA/GTC. In the

study of D1). We can mention several high impact results,

more than 300 publications

pact increased, with

refereed journals, 85% of which in Q1 journals (7% in Q1). We can mention several high impact results,

as the public release of the most detailed star ca-

tologue of the Galactic Center, a result of the ERC

Consolidator Grant GALACTICNUCLEUS, led by re-

searchers from the IAA. For the first time, a jet of gas

emerging from the central star of a planetary nebula

in the field of exoplanets, the study of the radio emission

of Proxima Centauri, showing a correlation between

the radio light curve and the orbital period, provided

a new tool for the study of exoplanetary systems. On

the other hand, a system formed by a white dwarf

and a Jovian-type planet was discovered, providing

a glimpse into the possible future of the Solar Sys-

An eruption of a magnetar was studied in de-

tail measuring distinct oscillations in its brightness
during peak energy, which are a crucial component in

understanding giant magnetar flares. With the EHT,

the structure of the magnetic fields at the edge of

the black hole in MB87 was imaged for the first time.

Additionally, the EHT pinpointed the central black hole

at the heart of the nearby galaxy Centaurus A. New results from SKA precursors (MeerKAT, ASKAP, LD-FAR, among others) with high resolution studies of

galaxy groups and galaxies in the Local Group were published. IAA researchers led the study of IZw18, one of the most metal-poor galaxies, connecting the radio-

production of a Helium halo with the presence of

Pop III stars. From the theoretical side, we could men-

tion that the IAA participated in the development of

Uchuu, the most accurate and complete simulation of

the large-scale structure of the Universe.

Regarding CAHA, the feasibility studies of the ins-

truments TARSIS and GAMAICA were presented in

Spring 2021 to the Calar Alto Scientific Advisory

Committee (SAC). Both are Integral Field Unit (IFU)
spectrographs and successfully passed the feasibility

study phase, once evaluated by an instrumental and

Technical Advisory Committee. A final recommen-
dation by the SAC, after an in-depth review of each

project, would be sent to the new CAHA Executive

Committee, that would take the final decision on the

selected instrument.

The Instrumental and Technological Development

Unit (UDIT) develops state-of-the-art instruments

for ground-based telescopes and space-borne as-

trophysical payload instrumentation. During 2021,

the final electrical and thermal testing and assem-

bly of the instruments Tumag and SCIP electronic

units, scientific cameras and harness for Sunrise III

was performed. Sunrise III mission is expected to be

launched in June 2022. The flight models of the IAA’s contribution to the instruments GALA & JANUS for the JUICE mission were delivered for the integration

in the spacecraft. JUICE is expected to be launched in

2023. UDIT also contributed to the instruments

COCA, MANIAC, Enviss and OPIC for Comet Inter-

ceptor, VenSpec and VEM for EnVision, and PIMI for

Vigil (former Lagrange), and the MEUs for PLATO.

With regard to ground-based instrumentation, UDIT

contributed to new instrumentation for CAHA (CAR-

MENES-PLUS), and the feasibility studies for GAMA-

ICA and TARSISI and OSN (MIMA). A number of tech-
nical activities were performed at the OSN, including

the mirror coating of the 90 cm telescope.

IAA is also playing a relevant role in the ESFRI infra-

structures for Astronomy. The Spanish Government

initiated the necessary steps to become a member of

the new IVO SKA. The IAA is coordinating the

Spanish participation in SKA, with funds granted by

a budgetary line from the Spanish Ministry of Sci-

ence (2021). This reinforces the consolidation of the

Spanish SKA office at the IAA. IAA is prototyping the

Spanish node of the international SKA Regional

Center (SRC) network, advocating for the principles

of Open Science and reproducibility. For EST, our

center leads the consortium for tunable imaging

spectropolarimeters, one of the core instruments

of which three units are planned to be built. For CTA,

the IAA played an important role in the development

of the Gammmapy project, both from the point of view

of software development and project governance. In

2021, CTA adopted the Gammmapy software package

difficult, prevented scientific exchange visits, and li-

mited the discussion among the centre’s researchers
to the screen in many cases. This large increase in

the number of theses defended witnessed the return
to a more normalised scientific life.

A research institute grows and learns from all those

who have worked in it. At the IAA we have incorpora-
ted into our year-end meeting a tribute to colleagues

reaching retirement age. The combination could not

be more interesting: the presentation of all the scien-
tific, technological and outreach activities carried out

at the IAA during the year 2021 (in this case), toge-
ther with the tribute to those who have contributed to

make the IAA the center it is today. In December 2021

we paid tribute to our fellow scientists José Juan

López Moreno and Víctor Aldaya, our UDIT colleagues

Miguel Herranz de la Revilla and Luis Cosilto, and our

administrative colleague Rosa de Castro. This

was not a goodbye, it was a see you always.

Enjoy this Report.
IAA Organizational Chart

DEPARTMENTS
- Solar System: René Duffard
- Stellar Physics: Pedro J. Amado González
- Radio Astronomy & Galactic Structure: Emilio Alfaro Navarro
- Extragalactic Astronomy: Josefa Masegosa Gallego

SERVICE UNITS
- General services: Francisco Tapia Ruiz
- Outreach & Communication: Emilio J. García Gómez-Caro
- Instrumental & Technological Development Unit: María Balaguer Jiménez
- Computer Center: José Ruedas Sánchez

OBSERVATORIES
- Calar Alto (CAHA): Jesús Aceituno Castro
- Sierra Nevada (OSN): Maia García Comas

ADVISORY COMMITTEES
- External Advisory Board
- Institute Board

From left to right, Luis Castilla, Miguel Herranz, José Juan López-Morera, Rosa Castro, and Víctor Aldaya. All five retired in 2021.

Picture group at the "IAA Day 2021", celebrated on December 17th.
IAA overview

The Instituto de Astrofísica de Andalucía (IAA) is the largest Astronomy institute of the Consejo Superior de Investigaciones Científicas (CSIC).

The IAA research is supported by a number of research groups, covering most of the research topics in modern Astrophysics. This research is carried out within four different departments.

Research Groups

Solar System
- Solar Physics
- Planets and minor bodies
- Terrestrial Atmosphere

Stellar Physics
- Lowmass Stars
- Stellar Variability
- ARAE
- HETH

Radio Astronomy and Galactic Structure
- Stellar Systems
- PISM
- ADN jets

Extragalactic Astronomy
- Galaxy evolution
- Theoretical gravitation
- Observational Cosmology
- Cosmology and Astroparticle Physics

The Instrumental and Technological Development Unit (UDIT) and the Computer Center (CC) provide technical support to the research lines.

The IAA owns the Sierra Nevada Observatory (OSN) and is also the CSIC reference research center for the Calar Alto Observatory (CAHA).

IAA overview

Staff

262

Total member

Category and gender distribution

52 Permanent Staff (10 Female / 42 Male)

62 Postdoc Fellows (25 Female / 37 Male)

46 Predoctoral Researchess (15 Female / 31 Male)

64 Technicians/Engineers (11 Female / 53 Male)

33 Services (17 Female / 16 Male)

Age distribution

2021 results

303

SCI publications

47

seminars at the IAA

43

press releases

18

meetings and schools

27

theses (PhD, Master, Degree)

14

awards

14.1 M total budget

International Staff

45 people in 20 foreign countries
Straddling the third and final years of the Severo Ochoa IAA award, and in spite of the abnormal normality, the year 2021 came with a number of relevant results in different scientific areas. Among them, we led a number of studies that contributed to the understanding of planetary systems: an ambitious radio observation project that showed that extrasolar planets can be detected with radio telescopes and follow their variability. DARMENES allowed the detection of hot ears and super-earths around two red dwarf stars; the discovery of a system formed by a white dwarf and a Jupiter-like planet showed that planets can survive the death of their stars; from the theoretical side, we first approached the problem of the distribution of temperatures on the surfaces of distorted white dwarfs. In our own Solar System, and thanks to the stellar occultation technique, we were able to determine the characteristics of an elongated centaur almost 400 km long. In the study of star formation in the Milky Way and the Local Universe, we led both the first evidence of a jet emerging from the central star of a planetary nebula, and the most extensive census of stars in the Galactic Center recorded to date. We also led a number of results on galaxy evolution and cosmology: we studied the distinct pulses in the giant magnetic flare from a neutron star, the most distant magnetar flare captured to date, located in the Sculptor group of galaxies; with EHT, we imaged the magnetic fields at the edge of the supermassive black hole in M87; we investigated the origin of the radiation producing the Helium halo super-massive black hole in M87; and we led the set-up of the infrastructure to host the SKA Data Challenge 2, and the development of a distributed archive for the ASKAP Hill all-sky survey WALLABY. In February 2021, the council of the International Radio Astronomy Observatory SKAID (Square Kilometre Array Observatory) intergovernmental organisation (IGO) was formed. The Spanish participation in SKA is led by the IAC-CSIC.

We continued our Web-loquio program (colloquia in virtual format), with more than 30 high standard talks, which were followed by numerous researchers also from other institutions in Spain and abroad. Our visiting program started to recover, trying to overcome the difficulties for travelling even within Europe due to the pandemics. Our training activities, most of them in the online format, were significantly boosted. Among them I highlight the two Scientific Advanced Schools, on “Planets, exoplanets and their systems in a broad and multidisciplinary context” (fully online) and “Star Formation” (hybrid format), together with more than half of the total modules of our “Advanced School for Instrumentation”, and the second editions of the schools for Machine Learning, Big Data, and Deep Learning in Astronomy and Statistics and Data Mining, respectively. Overall, almost 100 teachers and 700 students participated in all the Severo Ochoa IAA training activities during 2021. We also strengthened our actions to recruit master students through the JAE-intro SOMM program, thanks to which we could welcome 7 master students who started their projects in the corresponding SO-IAA research fields.

Among our Gender programme activities, we highlighted the virtual meeting with secondary schools organised for the International Day of Women and Girls in Science (February 11th), and the virtual round table “Women of excellence: meeting women Scientific Directors of Severo Ochoa Centers” (March 11th). We also strongly contributed to the design and elaboration of the virtual exhibit “Astronomas” (www.astronomas.org). Concerning outreach, we participated in a number of activities related to the multiformat project “Hello Earth”, including a documentary, the edition of a disk-book and several concerts, at IAA, Calar Alto Observatory and CSIC Madrid, where the SD-IAA exhibit “Perspective” was shown to the public. The SO-IAA personnel recruited in the previous year could introduce themselves in our IAA (Información y Actualidad Astronómica, nr 66) outreach journal.

We also celebrated an SO-IAA Conference in March 2021, together with a gathering of all SO-IAA committees in May and a welcome in-person meeting in September. We actively participated in the meeting 100xCiencia.5 organised by the Severo Ochoa and Maria de Maeztu Alliance (SOMMa), celebrated in Santiago de Compostela in November, and devoted to the International dimension of Science. In December we had the kick-off meeting for the preparation of the new Severo Ochoa proposal, to be submitted in February 2022. Virtually all activities above were supported by the personnel at the SO-IAA Technical Office, hired under the SO-IAA auspices: Alicia Pelegrina, Head of the Office, and Manuel González, whose help was especially instrumental for the SO-IAA monitoring and visitor assistance. Their efforts were joint together with the IAA administrative personnel, with particular emphasis devoted to European projects and technology transfer.
Research groups

CSIC considers the research groups as specific fundamental units which contribute to achieving the scientific objectives of the institution.

During 2021, the IAA had 13 active research groups, which belong to the global area of “Materia”. At the IAA we cover all major fields of Astrophysics and Space Science. Our research is based on the three pillars of modern Astrophysics: observation, instrumental development, and theoretical and numerical studies, all of which are firmly established and interconnected. The IAA groups study:

- The Sun, via spectropolarimetry, and their magnetic fields from an observational, theoretical and instrumental point of view: “Solar Physics Group”.
- The Earth’s atmosphere and planet atmospheres, including exo-atmospheric studies: “Group of Terrestrial Planet Atmospheres”.
- Planets and the formation and evolution of minor bodies in the Solar System: “Planets and Minor Bodies Group”.
- The physics of planetary systems and their low-mass stars: “Physics of low-mass stars, exoplanets and associated instrumentation Group”.
- The variability of stars and asteroseismology: “Stellar Variability Group”.
- Stellar clusters, massive stars and the Galactic Center: “Stellar Systems Group”.
- The formation, evolution and death of stars at different mass and spatial scales and the interstellar medium: “Physics of the Interstellar Medium Group”.
- The structure and evolution of galaxies, from the inner stellar and diffuse components to their large-scale cosmic distribution and evolution: “Galaxy Evolution Group”.
- Supermassive Black Holes and their immediate environments, including their associated relativistic jets: “Relativistic Jets and Blazars Group”.
- The combination between General Relativity and Quantum Mechanics in astrophysical scenarios: “Theoretical Gravitation and Cosmology Group”.
- The analysis of large-scale galaxy clustering mechanisms and the production of accurate cosmological simulations and galaxy mock catalogs: “Cosmology and Astroparticle Physics Group”.
- Multivariate observations of high-energy phenomena and theoretical stellar evolutionary models: “High Energy Astrophysics and Robotic Astronomy Group (ARAE)”.
- The structure and physical nature of all kind of photospheric magnetic structures, The design, development, and construction of solar instrumentation.
- The formation, evolution and death of stars at different mass and spatial scales and the interstellar medium: “Physics of the Interstellar Medium Group”.
- The variability of stars and asteroseismology: “Stellar Variability Group”.
- Stellar clusters, massive stars and the Galactic Center: “Stellar Systems Group”.
- The formation, evolution and death of stars at different mass and spatial scales and the interstellar medium: “Physics of the Interstellar Medium Group”.

Solar Physics

Overview

The IAA’s Solar Physics Group (SPG) focuses on solar spectropolarimetry from all the three points of view: theoretical, observational, and instrumental. Investigations and developments are carried out on:

- The radiative transfer equation (RTE) for polarized light in the presence of magnetic fields.
- The inversion of the RTE for its use on the interpretation of spectropolarimetric measurements.
- The formation, evolution, and death of stars at different mass and spatial scales and the interstellar medium: “Physics of the Interstellar Medium Group”.

Highlights

Science

The analytical formulation of telecentric, Fabry-Pérot etalons was obtained [24].

Internetwork fields (INs) carry a substantial amount of magnetic flux, and therefore energy, to the solar surface. We used coordinated observations obtained with the Swedish Solar Telescope and the Interface Region Imaging Spectrograph to follow the evolution of IN magnetic loops [116].

We discussed the application of convolutional neural networks (CNNs) as a tool to advantageously initialize Stokes profile inversions. CNNs alone are much faster than assisted inversions, but the latter are more robust and accurate [97].

Instrumentation

SUNRISE III (TuMag & SCIP instruments)
- Final testing of SCIP E-Unit FM (electrical tests and thermal balance test).
- Further development of the SCIP E-Unit software and firmware and support to the NAOJ team for the instrument characterization and optical performance.
- Optical characterization and thermal balance test of the TuMag scientific cameras FM.
- TuMag E-Unit FM assembly and testing (electrical tests and thermal balance tests).
- TuMag E-Unit and O-Unit integration and AIV phase: calibration and end to end testing at INTA.
- TuMag instrument delivered to MPS.

VIDIL (FM1 instrument)
- Conclusion of the ESA contracts for the DPU pre-development, bridging phase and DPU design.
- Definition of the DPU conceptual design.
- Kickoff of the B2 phase.
- Kickoff of the electronics preliminary design and the DPU development model (DM) design.
- SO/PHI
- Several actions on the PHI firmware for data compression.
Overview

The activities of this group are focused on four research lines: planets, minor bodies, exoplanetary atmospheres, and the Cosmic Dust Laboratory (CoDuLab). Broadly speaking, we aim to provide an integrated view of the Solar System and the atmospheres around exoplanets. Observational projects are being conducted from the ground as well as by using instrumentation on board space vehicles. The data interpretation is based on theoretical modeling, numerical simulations, and laboratory studies. We are involved in a number of space missions such as BepiColombo, Exomars, JUICE, Comet Interceptor, and EnVision.

Research lines

- Planets and minor bodies of the Solar System
- Dust in the Solar System
- Exoplanetary atmospheres

Highlights

Retrieval of gas and dust distribution of comet 8P/Tuttle, as a backup target for Comet Interceptor Mission. Comet Interceptor Mission is devoted to explore a dynamically new comet, but in the event that none of those objects becomes available while the spacecraft “waits” in the Sun–Earth Lagrange point L2, a number of short-period comets are being listed as alternative targets. Comet 8P is among those targets, and was characterised in [125].

Scattering matrix measurements of airborne aerosol particles. Mineral aerosols are known to affect climate, while biological aerosol particles as pollen are important as triggers of seasonal allergies. The scattering matrices of volcanic ashes, desert dust, and pollen were obtained using the Cosmic Dust Laboratory (CoDuLab), in the case of pollen for the first time [106].

Characterisation of newly discovered active asteroids. As part of a large program with GTC observations, the dust environment and the dynamical properties of active asteroids P/2019 A4 and P/2021 A5 were inferred [198].

Evidence of energy-, recombination- and photon-limited escape in giant planet H/He atmospheres. Hydrodynamical modeling was used to determine that HD 209458 b, HD 189733 b, and GJ 3470 b are in energy-limited, recombination-limited, and photon-limited regimes, respectively [164].

Stellar occultation of elongated centaur (95626) 2002 GZ32. The escape in these atmospheres has been studied so far through H Ly-α, but with large uncertainties. The He triplet line offers a new window for studying this hydrodynamic escape mechanism. We analysed HD 189733b and HD 209458b and the warm Neptune GJ3470b with developed hydrodynamic and non-LTE models. We found very consistent results ([164, 165]. See figure):

a) we reported, for the first time, observational evidence of the three hydrodynamic escape regimes in H-dominated atmospheres (photolimited, energy-limited, and recombination limited), as theoretically predicted

b) the upper atmospheres of these planets are lighter than expected (H/He ratios much larger than that of the Sun); and
c) we provided unprecedented constraints on their mass loss rates and thermospheric temperatures.

Image above:
Stellar occultation lightcurves of centaur 2002 GZ32 obtained at the five sites where the occultation was recorded, ordered from the northernmost site (Almería, Almería, Spain, top curve) to the southernmost one (University of Athens, Greece, bottom curve). The occulted star is 40 Eri A (ULTRAS 40 Eri A). See reference [125].

SOLAR SYSTEM

Terrestrial and planetary atmospheres

Overview

We investigate the thermal structure, composition, chemistry, dynamics and electricity phenomena of the Earth and planetary atmospheres. About the Earth, we focus on the study of solar particles and radiation effects on atmospheric composition, trends in temperature and species abundances, and the occurrence and impacts on lightning phenomena. About Mars, we study its temperature structure, dynamics, ionosphere and composition. We use a large variety of models and measurements from instruments on satellites, on ground and in the laboratory. More recently we are characterising the giant exoplanets’ atmospheres by modelling and analysing ground-based CARMENES data.

Research lines

- Drivers of the Earth’s middle atmosphere variability and its impact on climate
- Atmospheric Electricity in Planetary Atmospheres
- Thermal structure and composition of the Terrestrial planetary atmospheres
- Remote sensing of planetary atmospheres in IR/UV
- Characterization of exo-atmospheres by modelling and analysis of ground-based and space measurements

Highlights

The installation in 2018 of the Atmosphere-Space Interactions Monitor (ASIM) in the International Space Station (ISS) unveiled the existence of an unsuspectedly high number of blue flashes emanating from thundercloud tops and visible from space. In [166] we analysed a subset of these events that coincide with radio emissions, indicating an upward electric current. We showed that the optical emissions can be explained by the presence of a luminous source extending from the cloud top to a depth of around one kilometre. Our model allowed an estimation of the intrinsic energy of the events, which has implications on the possible global atmospheric impact of this type of electrical discharges.

We studied the seasonal and geographical variation of Mars ionosphere [112]. The data obtained by two different Mars Express instruments over more than 15 years show that the ionospheric peak electron density and peak altitude follow sinusoidal variations with the season. We also found that the presence of crustal magnetic fields increases the peak electron densities, and those peak altitudes are larger during global dust storms.

Atmospheric photo-evaporation is a key mechanism in planetary evolution. The escape in these atmospheres has been studied so far through H Ly-α, but with large uncertainties. The He triplet line offers a new window for studying this hydrodynamic escape mechanism. We analysed He triplet measurements taken by CARMENES of the hot Jupiters HD 209458b and HD 189733b and the warm Neptune GJ3470b with developed hydrodynamic and non-LTE models. We found very strong results ([164, 165]. See figure):

a) we reported, for the first time, observational evidence of the three hydrodynamic escape regimes in H-dominated atmospheres (photolimited, energy-limited, and recombination limited), as theoretically predicted

b) the upper atmospheres of these planets are lighter than expected (H/He ratios much larger than that of the Sun); and
c) we provided unprecedented constraints on their mass loss rates and thermospheric temperatures.
Overview

Our group studies the physics of planetary systems and their low-mass host stars. M dwarfs are interesting by themselves and for their potential for the discovery of temperate rocky planets that could sustain liquid water. We work in several aspects of these systems, from the general statistics and observational distribution of their exoplanets to the asteroseismic modelling and magnetic activity of their host stars. The group has expertise in theoretical studies of stellar structure and evolution, magnetic activity, asteroseismology and technical development of new instrumentation. The group hosts the co-PI of the CARMENES consortium and one of the two PIs of the CARMENES Legacy-Plus project.

Research lines

- Stellar structure and evolution of very low-mass stars
- Asteroseismology
- Exoplanets, Magnetic activity
- Astronomical instrumentation

Image above

Minimum mass of the planets detected around M dwarfs by other surveys (black symbols) and CARMENES (red symbols) plotted versus their respective orbital periods. The three star symbols show the planets detected in (13). The shaded curves show the mass-period regions where it is not possible to detect other small or longer-period planets in the same datasets in that paper.

Highlights

CARMENES is a worldwide unique instrument, co-led by the IAA. It is collecting high-precision radial velocities simultaneously by its optical and the near-infrared channels. The latter was designed and built at the IAA and has shown to be a groundbreaking instrument for the study of exoplanet atmospheres, opening new lines of research in this field. It is the largest exoplanet survey of red dwarfs to date. In 2021, the CARMENES Legacy-Plus project continued enlarging and deepening the original survey.

CARMENES has published or submitted 87 papers, 21 of them in 2021, with 40 discovered or confirmed new planets and 15 additional firm candidates. This has allowed us to publish the first and most accurate statistical study on occurrences of exoplanets around M dwarfs to date. The CARMENES results have increased by 50% the number of planets in the parameter space probed by our instrument. In 2021, we continued leading the consortium and contributing to its working groups. We also continued our participation in the other large exoplanet survey in the southern hemisphere (RedDots) and in NASA’s mission TESS.

We continued discovering unique systems that deepen our understanding of close-in terrestrial and super-Earth planets, such as those in the systems G 264-012 and Gl 393 (13), the latter producing the smallest rotational amplitude yet, which shows the precision we can reach with CARMENES (the paper had the contribution of two of our students). These stars were observed in radio to try to detect the magnetic interaction of the planets with their stars. They were followed up with OSN photometry, which accumulates now around 3000 epochs of observations for the CARMENES survey. This result was published as a Press Release by CSIC in its main web page. To understand different aspects of the host stars, we published a new method to study compact stars deformed by their fast rotation (66). We continue our participation in the instrumentation projects CARMENES-PLUS for CAHA and ANDES for the ELT.

Overview

The research at IAA’s Stellar Variability Group focuses mainly on the study of stellar structure and evolution and its impact on the characterization of exoplanets, stellar populations and galactic archaeology using asteroseismic techniques.

The group members are involved in the development of theoretical models as well as innovative time series analysis techniques that can be applied to extract information from ultra-precise data, especially observations from space satellites. Instrumental developments are the key part of the work of the group’s technical team. The group is also represented in the IAA Sky Quality Office.

In the past we participated in the design and exploitation of the CoRoT space mission and, currently, we are strongly involved in the preparation of the future PLATO 2.0 (ESA) space mission.

Research lines

- Stellar Structure
- Stellar Evolution
- Time Series Analysis
- Open Science

Highlights

Asteroseismology allows to study stellar interiors by analysing how oscillations (manifested at the surface of the star as brightness variations or Doppler shifts) propagate at different depths depending on their frequency.

Delta Scuti stars are intermediate-mass (i.e. between 1.5 and 3 solar masses) pulsating stars which are moderate-to-fast rotators with spectral types ranging from A to F; these stars are very good laboratories to test theories of angular momentum and chemical transport in stellar interiors. The detection and understanding of rotation in stellar interiors is, nowadays, one of the main unsolved questions in stellar physics. Rotation severely hampers an accurate determination of stellar global parameters, such as effective temperatures and surface gravities. Although we have measurements of projected velocities, until now only interferometric techniques for bright and deformed stars may be able to determine the angle of inclination of the star and, therefore, the real rotation velocity.

In [241] we analysed the periodicities found between the pulsation frequencies of a sample of Delta Scuti stars using three well known techniques: the Fourier transform, the autocorrelation function and the histogram of frequency differences. We were able to identify the signature of the rotation (namely, the rotational splitting) in most of the cases, thus paving the way for developing a robust methodology to determine the rotation using asteroseismic data only.

In the figure, we label as “delta r” the rotational splitting, which stands out as a prominent peak in all three analysis techniques. Technological highlights of PLATO, where IAA is responsible for the MEU (Main Electronic Unit).

• Delivery of 2 units: MEU MTD (Mass Thermal Dummy) at OHB.
• MEU CDR (Critical Design Review) in progress.
STELLAR PHYSICS

ARAE
(Robotic and high-energy Astrophysics)

Overview
The ARAE research group was founded in 2001, although some of its members had already started their activity in 1990. Scientists and engineers work on a variety of projects, combining their strengths. Research lines are multi-range observations of high-energy phenomena, theoretical stellar evolutionary models and models of stellar population synthesis. Significant technological developments are also carried out, regarding the robotization of small/medium size observatories and astronomical instrumentation development such as the BOOTES Global network of telescopes. We are also involved at space-borne missions. Teaching, public outreach and citizen science are also part of the ARAE activities.

Research lines:
• Compact Objects in the Galaxy
• Cosmic Gamma-Ray Bursts (GRBs)
• Gravitational Waves (GW)
• Electromagnetic counterparts
• Robotic Astronomy
• High-precision Astrometry

Highlights
Study of the nearby (z = 0.0785) VHE-detected GRB 190829A/SN 2019oyw [135]
Gamma-ray bursts (GRBs) represent the most powerful explosions in the Universe, with the long-duration ones being related to massive star collapses. GRB 190829A is one of the most energetic events recorded to date. We presented the 10.4 m GTC observations of the afterglow of GRB 190829A and its underlying supernova (SN) and compared to GRB 180728A, similar in behaviour. We concluded that although the prompt emission temporal properties of GRB 190829A and GRB 180728A are similar, the two pulses are different in the spectral domain. The SN 2019oyw associated with GRB 190829A is powered by Ni decay and is a Type Ic Broad-Line SN, its spectroscopic and photometric properties are consistent with those observed for SN 1998bw, but evolved earlier.

Very high frequency oscillations in the main peak of a magnetar giant flare [55]
Magnetars are strongly magnetized, isolated neutron stars with high X-ray luminosities and very short rotation periods. Very energetic giant flares (lasting ~0.1 s) have been detected in hard X-rays/soft gamma-rays from magnetars, all but one detected from inside our galaxy. During such giant flares Quasi-Periodic Oscillations (QPOs) with low and high frequencies have been observed, their significance been questioned. High frequency QPOs have only been seen during the tail phase of the flare. We reported the observation of two broad QPOs at very high frequencies in the main peak of a giant gamma-ray flare in the direction of the NGC 253 galaxy, disappearing after 3.5 ms. The flare was detected by the ASIM instrument aboard the International Space Station, the only instrument that recorded the main burst phase [0.8−3.2 ms] in the full energy range [50 keV−40 MeV] without suffering from saturation effects. Along with sudden spectral variations, these extremely high frequency oscillations in the burst peak provide a new crucial component to understanding magnetar giant flares.

STELLAR PHYSICS

HETH
(High energy transients and their hosts)

Overview
The “High-Energy Transients and their Hosts” (HETH) group studies stellar explosions and their environments. The main focus are gamma-ray bursts (GRBs) but the group also studies a wide variety of explosive transients such as supernovae, magnetars or tidal disruption events. HETH also develops new tools and instrumentation to enhance the research capabilities. Group members have been part of the teams developing instruments such as GROND (2.2m telescope), La Silla X-shooter (8.2m VLT, Paranal) and have led the OCTOCAM instrument (8.1m Gemini South).

Research lines:
• Explosive transients: Gamma-ray bursts, supernovae, fast radio bursts, unusual objects
• Electromagnetic counterparts of gravitational waves
• Host galaxies of astronomical transients: Spatially resolved with IFU and unresolved
• Starburst galaxies from low to high-redshift
• Very late evolution stages of massive stars
• New instrumentation: OCTOCAM at Gemini, GATOS and EIFIS at GTC

Highlights
Outflows from GRB hosts are ubiquitous: kinematics of z<0.3 GRB−SN hosts resolved with FLAMES [278]
GRB hosts studied with resolved integral field spectroscopy are still rare, due to the low numbers at suited (low) redshifts. This is the first sample of GRB hosts observed not only at high angular but also spectral resolution using the FLAMES/VLT spectrograph at a medium resolution of ~10,000. Our sample of six dwarf galaxies at z<0.3 all show indications for powerful outflows from star-forming regions, a direct evidence for the massive star-formation happening in GRB hosts. Most galaxies in our sample do not show a regular rotating disk in the narrow component and, in some cases, even show a double component. The outflow component is more metal rich, blue-shifted compared to the narrow emission component and follows a different velocity field. Similar high-resolution studies for other explosive transients would be highly warranted to study resolved star-formation processes and effects on the galaxy.

The Exotic Type Ic Broad-Lined Supernova SN 2018gep: Blurring the Line Between Supernovae and Fast Optical Transients [238]
In the past few years, a new type of transient has emerged, called “fast blue optical transients” (FBOTs), some of which are related to supernovae. SN 2018gep was one of the most extreme of these FBOTs with very fast rise time and high peak magnitude and, after a featureless blue spectrum until peak magnitude, it evolved into a peculiar broadline Type Ic SN. The contribution from HETH was a spatially resolved study of the host galaxy of SN 2018gep through a DDT program at PMAS/CAHA. The galaxy is a star-forming dwarf and the SN located in a star-forming region with 0.4 solar metallicity, much below what has been measured for other BL−Ic SNe and very different from other FBOTs, giving further evidence for a peculiar type of BL−Ic and progenitor system.
Stellar systems

Overview
The Stellar Systems Group (SSG) was created in 1988. Our research lines cover stellar clusters, massive stars, and the Galactic Centre. Currently, the group is studying the connection between star-forming processes and spatial and kinematic structures at different scales, and continues with the exploitation of large Galactic surveys (including Gaia, DES, OTELO, GALANTE and J-PLUS). The second focus of our work lies on investigating the Galactic Centre and massive star formation in this emblematic region of the Milky Way. Please visit our website for more information: https://ssg.iaa.csic.es/.

Research lines
- Galactic Centre
- Formation, evolution and destruction of Stellar Systems
- Massive Stars

Highlights
The Galactic Centre Team doubled the number of known stars with radio emission originating in ionized stellar winds in the 2–3 Myr-old massive Arches stellar cluster in the Galactic Centre in a combined near-infrared and radio study, that benefits from the high sensitivity of the Very Large Array [98]. The derived mass loss rates of the observed massive post-main sequence stars agree well with those of Wolf Rayet stars, in agreement with their spectral identifications. By comparing the number of detected stars with their expected number inferred from stellar evolutionary models, the Galactic Centre Team found that the observations require that the Arches cluster formed relatively more massive stars than star formation processes in the Galactic disc. This finding of a so-called top-heavy initial mass function is an independent confirmation of theoretical predictions and of the results of previous near-infrared studies.

The Stellar System Group has as its main objective the study of the structure, formation and destruction of stellar systems. The astrometric and photometric data provided by Gaia represent the frontier, in quality and quantity, for this kind of studies. In addition, the group is involved in international consortia to obtain complementary data to Gaia that help us to achieve these scientific objectives, such as J-PLUS, GALANTE, WEAVE and 4-MOST to name just a few.

In 2021 we continued with the exploitation of the Gaia releases by analyzing the astrometric data in collaboration with other groups of the IAA, thus reinforcing the cohesion and synergy between the different lines of research of our institute. In particular, we analyzed the kinematics of the planetary nebula Sab 19 and determined its orbit in the Milky Way [120]. Within the GALANTE consortium, we published a paper about the design of the observational strategy, the selection of target fields, and the data reduction pipeline, which was applied to obtain the photometric catalog that we are preparing [181].

AGN Jets

Relativistic Jets & Blazars

Overview
The main research topic of our group is the study of supermassive black holes (SMBHs) harbored in the nuclear region of active galaxies. Huge amounts of energy are released from their innermost environment in the form of ultra-relativistic jets, as a consequence of mass accretion onto the SMBH and energy extraction through powerful twisted magnetic fields anchored to it. We study these objects at the maximum achievable angular resolution by means of very long baseline radio interferometric observations with the Event Horizon Telescope (EHT) and the space antenna RadioAstron. Thanks to these instruments, we are able to directly image SMBHs and the jets forming close to them.

Research lines
- Imaging supermassive black holes with the Event Horizon Telescope
- Accretion onto supermassive black holes and the formation of relativistic jets
- Blazar jet multi-wavelength phenomenology from the horizon to parsec scales
- AGN, black hole growth and demographics, binary blackholes and gravitational waves

Highlights
In 2017 April, the Event Horizon Telescope (EHT) observed the near-horizon region around the supermassive black hole at the core of the M87 galaxy. These 1.3 mm wavelength observations revealed a compact asymmetric ring-like source morphology. This structure originates from synchrotron emission produced by relativistic plasma located in the intermediate vicinity of the black hole. In two subsequent papers, published in 2021, we presented the corresponding linear-polarimetric EHT images of the center of M87 [8] and the theoretical interpretation [7]. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. We found that only a part of the ring is significantly polarized. The resolved fractional linear polarization has a maximum located in the southwest part of the ring, where it rises to the level of ~15%. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attributed to Faraday rotation internal to the emission region. We showed that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identified a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important.

In [95] we presented our latest RMHD and non-thermal emission simulations aimed to study the role of the magnetic field in the jet dynamics and emission. Models with the highest magnetizations and/or magnetic pitch angles lead to an uneven distribution of the internal energy as a consequence of the larger relative magnetic tension and radial Lorentz force, which translates into a spine brightening in the total and linearly polarized intensity maps. Highly magnetized jets with large toroidal fields tend to have weaker shocks and correspondingly weaker radio knots.
Research lines

- Massive stars and their surroundings. SN remnants and wind-blown bubbles
- Star and planet formation and interaction
- Planetary nebulae and their precursors
- Luminous and Ultra Luminous Infrared Galaxies
- Prospective Science work for the SKA

Overview:

We study the formation, evolution, and death of stars at different mass and spatial scales across different environments. The early stages of star and planet formation, as well as star-planet interactions, are studied through radio interferometric observations and modelling of the observed emission. The final stages of the life of stars are studied by the multi-wavelength characterization of evolved stars and the wind-blown bubbles around them, to understand the processes shaping planetary nebulae and the circumstellar medium around massive stars. Radio interferometric monitoring of supernova (SN) explosions and their distribution in ultra luminous infrared galaxies is also carried out to determine the SN and star formation rates.

Highlights

Planetary nebulae (PNe) are expected to expand and brighten notably in its early formation phases, but the comparison of the images of the Stingray Nebula (aka Hen 3–1357) captured by HST in 1996 and 2016, revealed exactly the opposite: the nebula dimmed drastically in brightness and it seems to have shrunk [27]. This is interpreted as a response to a drop of the surface temperature (and therefore, of ionizing radiation), of its central star, SAO 244567, after a brief flash of helium fusion. These results demonstrate that nebular changes in PNe can occur on human time-scales.

The jet in NGC 2392, the Head’s Lion Nebula, was the first ever detected in a PN, but an image of the jet was lacking because its terribly weak emission is projected against bright nebular emission. GTC MEGARA observations allowed imaging this jet for the first time [119]. At odds with the fossil jets in other mature PNe, the jet in NGC 2392 is currently being collimated and launched, supporting the presence of a double-degenerate system where one component undergoes accretion. We carried out the most comprehensive radio monitoring campaign towards the closest star to our Sun, Proxima Centauri, using the ATCA [227]. We detected radio emission from the star and its planet, Proxima b, showing periodic emission enhancements synchronized with the orbital planetary motion. This radio emission is powered by electron cyclotron-maser, which is able to provide strong, pulsed-like, polarized emission. The data agree very well with the predictions from models of interaction between a host star and its planet. This pioneering work shows, for the first time, that the presence of an exoplanet can be detected by observing periodic variations of radio emission from the system, opening a new path for the detection and study of exoplanets. This is a very promising technique given the exceptionally sensitive radio telescopes that are currently under development, such as the SKA.

Overview

Our group is interested on theoretical gravity, both at the classical level and specially on those situations in which General Relativity (GR) – the best theory of gravity we have– is expected to start failing. The most promising situation in which to observe departures from GR is the physics of gravitational collapse and its end result (black holes in the standard theory). Thus, a large part of our research is centered in analyzing how different situations in standard GR would be modified when going beyond this theory. For instance, we analyze modifications based on semiclassical gravity and those suggested by emergent and analogue gravity scenarios. We study the viability of the new scenarios suggested by these frameworks.

Highlights

Structure of gauge theories [10]. This works contains a complete description of how the crucial notion of gauge symmetry can be most clearly understood embedded into a group theoretical setting. This allows, for example, to fix the Weinberg theta angle algebraically. In addition, it suggests the possibility of a direct non-perturbative quantization of massive non-Abelian Yang-Mills fields without recurring to the Higgs mechanism.

Semiclassical constant-density spheres in a regularized Polyakov approximation [19]. Semiclassical (SC) gravity is a gravitational theory beyond General Relativity which takes into account effects of vacuum polarization. When a stellar configuration approaches the black hole limit, these SC effects become so relevant that they can largely deform the classical geometry. In this paper we proved that SC gravity can lead to relativistic stars so compact that they can be mistaken by black holes. Black hole inner horizon evaporation in semiclassical gravity [29]. We analyze SC effects at the inner horizon that any realistic black hole contains. We show that the inner horizon has a tendency to move outwards and that this tendency is exponential. This suggests a change of paradigm for black hole evaporation: instead of a slow decay from the outside in, it points towards the possibility of a fast decay from the inside out.

Toward a Mechanism for the Emergence of Gravity [31]. We present a mechanism through which gravity could emerge from an underlying system akin to condensed matter systems. We discover a way to avoid confronting the two most important obstacles faced by emergent gravity: Weinberg-Witten’s and Marolf’s theorems. Our mechanism relies on making gravity emerge at the same time than the diffeomorphism gauge symmetry characteristic of general relativity.

Interpretations and naturalness in the radiation-reaction problem [32]. We revisited the one-century-old conceptual problem of understanding when and how a classical charge radiates and how this radiation back-reacts on its trajectory. This revision allowed us to introduce an additional term in the usual analysis: the natural trajectories of regular extended charges should exhibit an oscillating behaviour.
Galaxy Evolution

Overview
The group conducts observational and theoretical studies over a wide variety of issues on galaxy structure and evolution, and cosmology. These range from the inner stellar and gaseous components of galaxies to their large-scale cosmic distribution and evolution. These are complemented with the participation in the research and development of instrumental and technological projects. Observationally, data from 2D spectroscopy, multi-band photometric and HI surveys are used for studies that include the physics of star formation, stellar populations and the diffuse medium in galaxies and galaxy groups and clusters, nuclear activity in galaxies and their interplay with stellar evolution, or the environmental dependence of the structure and evolution of galaxies. These activities include supervising PhD, teaching at master and doctoral level, public outreach conferences, and eScience. Furthermore, we are leading since 2011 the participation in Spain in SKA.

Research lines
- Active Galactic Nuclei
- Astronomical instrumentation
- Cosmic evolution of galaxies
- Open Science
- Physics of Quasars
- Star formation and violent star formation in galaxies
- Synthesis of stellar populations
- The interplay between massive star formation and chemical evolution in galaxies
- The influence of the environment on the evolution of galaxies

Highlights
Chemical abundances in the nuclear region of nearby galaxies from the Palomar Survey (224).

We have estimated chemical abundances and ionization parameters in the nuclear region of a sample of 143 galaxies from the Palomar Spectroscopic Survey, composed of star-forming galaxies (87), Seyferts 2 (16), and LINERs (40) using the HII-CHI-MISTRY code. We correlated the derived quantities with other different properties of the host galaxies, such as morphology, stellar mass, luminosity, and mass of their supermassive black holes. We find that Seyferts 2 present slightly higher chemical abundances. In contrast, we obtain lower chemical abundances for LINERs than for star-forming galaxies. Our analysis of AGNs (both LINERs and Seyferts) shows that their host galaxy properties are not correlated with our estimated chemical abundances.

The Javalambre-Physics of the Accelerated Universe Astrophysical Survey (J-PAS) will observe 8000 deg2 of the northern sky with 56 photometric bands, and is ideal for the detection of emission line galaxies. We have developed a new method based on artificial neural networks to measure the equivalent width (EW) of Hα, Hβ, [N II], and [O III] lines up to z = 0.35. These lines are essential diagnostics for understanding the evolution of galaxies through cosmic time. We trained and tested artificial neural networks with synthetic J-PAS photometry from CALIFA, MaNGA, and SDSS spectra. We prove the capability of the method by recovering the BPT (O III)/Hβ versus [N II]/Hα and WHAN (E1/Hα) versus [N II]/Hα diagram reaching precision of 0.092 and 0.078 dex for the (N II)/Hα and (O III)/Hβ ratios. Furthermore, we show the capability of the method to measure an EW of 10 Å in Hα, Hβ, [N II] and [O III] lines with a signal-to-noise ratio (S/N) of 3, 5, 3.5, and 10, respectively, in the photometry. Finally, we compare the properties of emission lines in galaxies observed with miniPAS and SDSS. Despite the limitation of such a comparison, we find a remarkable correlation in their EWs.

The miniPAS survey. Identification and characterization of a sample of galaxies from the J-PAS photometric system (111).

We present the potential of J-PAS by the identification and characterization of a sample of galaxies from the miniPAS photometric system (1 deg2 on the AEGIS field with the J-PAS photometric system). SED-fitting codes are used to constrain the stellar mass, age, metallicity, extinction, and rest-frame and dust-corrected EW(Hα) versus [N II]/Hα) diagram reaching a precision of 0.092 and 0.078 dex for the [N II]/Hα and [O III]/Hβ ratios. Furthermore, we show the capability of the method to measure an EW of 10 Å in Hα, Hβ, [N II] and [O III] lines with a signal-to-noise ratio (S/N) of 3, 5, 3.5, and 10, respectively, in the photometry. Finally, we compare the properties of emission lines in galaxies observed with miniPAS and SDSS. Despite the limitation of such a comparison, we find a remarkable correlation in their EWs.

The miniPAS survey. Identification and characterization of a sample of galaxies from the J-PAS photometric system (111).

We present the potential of J-PAS by the identification and characterization of a sample of galaxies from the miniPAS photometric system (1 deg2 on the AEGIS field with the J-PAS photometric system). SED-fitting codes are used to constrain the stellar mass, age, metallicity, extinction, and rest-frame and dust-corrected EW(Hα) versus [N II]/Hα) diagram reaching a precision of 0.092 and 0.078 dex for the [N II]/Hα and [O III]/Hβ ratios. Furthermore, we show the capability of the method to measure an EW of 10 Å in Hα, Hβ, [N II] and [O III] lines with a signal-to-noise ratio (S/N) of 3, 5, 3.5, and 10, respectively, in the photometry. Finally, we compare the properties of emission lines in galaxies observed with miniPAS and SDSS. Despite the limitation of such a comparison, we find a remarkable correlation in their EWs.

The challenge of the ionization balance of Helium II in IZw18 (146).

IZw18 is a champion among the most metal-poor (~4% Z⊙) galaxies known in the Universe. We have unveiled the existence of a strong H-emitting region in this galaxy, thus representing a unique local analog of the most distant Hel emitters found towards the cosmic down. The source of ionization of the observed IZw18 HeII region remains a mystery, since it could not be explained invoking only the conventional stellar sources for this galaxy. This is the first study of the X-ray variability of IZw18, which has been performed in order to evaluate the contribution of the X-ray photons from the dominant high mass binary (HMXB) of IZw18 to the ionization of the region of Hell. The X-ray emission of the galaxy is found to show small variations on timescales from days to decades. The best-fit to the observations using models of HMXB X-ray spectra with photoionization models (Senchyna et al. 2020) cannot explain the ionization budget of IZw18, so the HeII ionization challenge remains.
UDIT
Instrumental & Technological Development Unit

Overview
The Instrumental and Technological Development Unit (UDIT) is focused on the development of state-of-the-art instruments for ground-based telescopes and space-borne astrophysical payload instrumentation. During more than 40 years, the instruments developed at the UDIT have placed the IAA as a reference center for technological research projects. The technical production at the UDIT can be split into two major lines:

- Analysis, design, integration, and verification of astronomical instruments for ground-based telescopes in Calar Alto Observatory (CAHA), Sierra Nevada Observatory (OSN), ELT (Extremely Large Telescope), etc.
- Analysis, design, integration, and verification of interplanetary scientific space missions and stratospheric balloon observatories.

Highlights
In the following a summary on the activities performed during 2021 for the instrumentation projects that were developed at the UDIT is provided.

Space projects
JUICE (JUpiter ICy moons Explorer): The Flight Models (FM) of the IAA's contribution to the instruments GALA and JANUS were delivered for integration in the spacecraft, these are the Power Converter Module (PCM) of the instrument GALA and the power supply and mechanisms control module (PSM and MCM respectively) and the filter wheel of the instrument JANUS. The mission is expected to be launched in 2023.

Comet Interceptor: The technical team worked in the design and manufacturing of several prototypes (EBBI) to reach the Technology Readiness Level (TRL) 5. The IAA is responsible for developing the power converter modules for the instruments COCA and MANIAC as well as the power-handling unit and the data handling unit for the instruments Envis and OPIC.

EnVision: The IAA worked on the preparation of the CoDR documentation package for the power supply of the suite of instruments Venus Spectroscopy (VenSpec) and VEM (Venus Emission mapper).

PLATO (PLAnetary Transits and Oscillation of stars): The technical team was focused on the manufacturing and verification of the Mass Thermal Dummy (MTD) of the two MEU (Main Electronics Unit) that were successfully delivered at the end of 2021. In addition to this, the team worked in the integration of the MEU engineering model with the rest of the subsystems of the instrument. The development of the instrument Qualification Model (QM) and the Critical Design Phase also started during this period.

SUNRISE III: The final electrical and thermal testing and assembly performed for the instruments TuMag and SCIP electronics units, scientific cameras and harness. Software and firmware development for both instruments also continued. During 2021, calibration and end to end testing of both instruments was carried out with the direct implication of IAA's technical team. SUNRISE III mission is expected to be launched in June 2022.

Vigil (former Lagrange): The IAA technical team finished the pre-development study for the PMI instrument Digital Processing Unit (DPU) with the definition of a conceptual design for this subsystem. The design of a DPU Development Model (DM) started, which will be the starting point to reach TRL 6. In addition to this, the definition of the PMI electronics, harness and grounding concept started.

Solar Orbiter: Technical activities were devoted to support PHI Solar Orbiter operations.

Ground-based instruments:

MOSAIC (Multi-object spectrograph for ELT): The first hardware prototype was manufactured and performed the testing of the updated version of the instrument control software. The technical team also worked on the definition of the next step prototype, based on a multi-axes test bench and was focused on management aspects like the development tools definition, budgets, work-packages description, etc.

New instrument for the 3.5m telescope in CAHA: The UDIT concluded in 2021 the feasibility studies of two potential instruments for CAHA observatory next generation instrumentation, GAMAICA and TARSIS.

GAMAICA: The IAA participated in the instrument concept development including structural and front-end mechanical and opto-mechanical designs, electronics and software designs and spectrograph fiber system unit conceptual design.

TARSIS: The IAA contributed to the instrument concept development with the electronics and instrument control software conceptual designs.

Other CAHA instrumentation: In 2020 the UDIT had continued to work on the instrument PANIC (Pano-ramic Near Infrared Camera for Calar Alto) through the adaptation of the instrument software to the new detector.

MIMA (Multi-Spectral Imager Mesopause Airglow): The instrument reached its final development phase. The software and electronics were integrated and the AIV phase started. The instrument commissioning and the first light is expected in 2022.

GALIUS (GrAnda Lightning Ultrafast Spectrograph): With the work performed in 2021, two papers were published. One of them describes the experimental analysis of the radial profile of a lightning-like plas-ma channel through high-speed spectroscopy, which was done for the first time. In addition to this, the group also recorded green signatures of a real sprite.

Data Science: This group's activities were focused on the development of algorithms to be executed in computational clusters for autonomous image calibration, precision astrometry in GAIA EDR3, absolute photometry and light curves generation and cross-correlation between catalogs enabling the use of artificial intelligence.

Flight Models of the JANUS instrument for the AXICE Mission: Power Supply Module (PSM) and Mechanism Control Module (MCM)
Activities and highlights

Publications and main scientific results
Observations at Calar Alto produced in 2021 a total of 107 publications in international peer-reviewed journals. This includes both scientific projects awarded with open time, and the long-term legacy projects that started in 2021. Calar Alto also continued its activities for the development of new instrumentation, as well as basic infrastructures. We describe below the most relevant of these activities:

Two new planetary systems orbiting G 264-012 and Gliese 393, containing super-Earths, were discovered with the high-resolution spectrograph CARMENES at the 3.5m telescope. This result, reinforces the idea that low-mass stars are susceptible to be orbited by terrestrial planets. Although the high temperatures of the new discovered planets prevent the presence of liquid water in their surface, this discovery has implications for the study of the probability of life in the Universe [13].

CARMENES observations also allowed the characterization of a planet surrounding the star Gliese 486. The combination of the properties of the planet and its distance to the star make it observationally favorable for searches for an atmosphere [284].

Studies of exoplanetary atmospheres with CARMENES led to the first detection of atomic and molecular oxygen in the planet orbiting the star Kepl-9. This is the hottest exoplanet known, thus unsuitable to harbor life (Borsa et al. 2021, Nature Astronomy, 6, 226-231).

The study with CARMENES of the planets orbiting the star V1298 Tauri suggests that the gaseous giant planets could evolve much faster than expected from the current models that point to a slow formation of giant planets (Suárez Mascareño et al. 2021, Nature Astronomy, 6, 232-240).
Three telescopes at Calar Alto (3.5m, 2.2m, and 1.23m) participated in an ambitious observational campaign aimed at studying the clouds of the Venus atmosphere and their relation to its observed variability. This project is being carried out by an international consortium that includes researchers from the País Vasco University; it combines data from different spatial missions and ground telescopes, and among the varied instrumentation used to gather the data, we highlight the camera PlanetCam, available at Calar Alto (Lee et al. 2021, EPSC, 15, 637).

The European Space Agency (ESA) agreed a collaboration with Calar Alto that aims at studying Near Earth Objects including Potentially Hazardous Asteroids. This project not only provides an important service to the ESA Planetary Defense Office, but also produces relevant results related to other astronomical topics. A good example was the discovery of the cataclismic and eclipsing type DQ Herculis binary star, a system with a variety of peculiarities that make it unique (Beuermann et al. 2021, Astronomy & Astrophysics, 657, A101).

Calar Alto also participated in an interdisciplinary initiative (C-CLEAN) that includes several research institutes. This project is intended to detect viruses on surfaces. A prototype, patented at Sevilla University, applies hyperspectral images to detect the characteristic signal of several microorganisms, like fungi, bacteria and viruses (including SARS-CoV-2), as well as their concentration (108).

International collaborations

OPTICON is an European network dedicated to share optical astronomical resources at a European level. During 2021, OPTICON joined RadioNet, its equivalent in Radioastronomy. This resulted in the OPTICON-RadioNet (ORP) network, the largest collaborative network of ground-based astronomy in Europe, which intends to coordinate methods and observational tools, and to provide access to a wider set of astronomical facilities. Calar Alto, previously part of OPTICON, participates now in ORP, together with the IAA-CSIC, Cambridge University (United Kingdom), CNRS (France), and Max-Planck Institute of Radioastronomy (Germany), among others.

The ongoing international long-term observational projects continued during 2021:

- The project SEAMBH (Super-Eddington Accreting Massive Black Hole), in collaboration with Beijing University, is dedicated to the study of supermassive black holes in active galactic nuclei applying the reverberation method, using the CAFOS instrument at the 2.2m telescope.

- The extragalactic survey CAVITY (Calar Alto Void Integral Field Treasury survey), devoted to the study of the properties of galaxies in cosmic voids, the loneliest objects in the Universe. This project makes use of the integral field spectrograph PMAS at the 2.2m telescope.

- The KOBÉ survey is searching for potentially habitable exoplanets orbiting K-dwarfs, and is using the CARMENES spectrograph at the 3.5m telescope.

- CARMENES Legacy+, is an extension of the CARMENES survey, and is intended to the detection and characterization of planets around M-dwarfs, the occurrence of long-period giant planets, and the characterization of exoplanet atmospheres.

New technological developments

The construction of the prototype MARCOT Pathfinder started in 2021. This project proposes to create large optical telescopes by adding the light collected by many small individual telescopes, coupled through innovative technological concepts. The MARCOT collaboration includes Calar Alto, IAA-CSIC, and Potsdam Astronomical Institute (Germany).

During 2021, it started the execution of the first phase for the installation of a Fabry-Pérot calibration unit for the CAFÉ high-resolution spectrograph at the 2.2m telescope. This action will further improve the already excellent performance of this instrument.

CAHA was searching for a new instrumental concept to be developed for its flagship telescope, the 3.5m. This concept will be selected from the instrumental ideas that were presented during a science workshop for Calar Alto held at IAA-CSIC in March, 2020. Two designs were selected for the viability study phase: TARSIS and GAMAICA. The final decision on the instrument selected to proceed to the construction phase is expected for Spring 2022.

Also related to the CARMENES spectrograph, the CARMENES+ project started the actions on the hardware to improve the thermal stability of the Near Infrared arm of the instrument, which is critical to obtain the optimal spectral resolution that makes this instrument unique.

Finally, regarding basic infrastructures, the project of improving the energy management in the observatory executed most of the civil work during 2021. This initiative was funded by the FEDER program (Reference ICT5-2017-CAHA-4) and by the Programa de Ayuda a ICTs del subprograma estatal de infraestructuras científicas y técnicas y equipamiento (reference CAHA-16-CE-3978).
Centaur and TNO occultations observed from OSN were used to constrain the properties and probabilities of rings around Solar System minor bodies. 2002GZ32 centaur occultations resulted in a negative detection of thick rings, as the ones found for Chariklo, but narrower or optically thinner rings could not be ruled out [261].

Other programs running at OSN included the SN2 project, focused on building a spectro-photometric sample of type-Ia supernovae; blazar polarimetry and photometry to contribute to the MAGIC and WEBT collaborations; the monitoring of comet 67P/Churyumov-Gerasimenko to understand its evolutionary processes; the follow-up of Gamma Ray bursts to study their temporal evolution; and the contribution to CoRoT legacy, to test properties scaling relations of δ Scuti stars.

Main Technical Activities

In a coordinated UDIT and OSN effort, the three T90 mirrors were transferred to CAHA for aluminization in September after silver M3 coating removal. After their alignment in record time, the signal on the T90 improved by 80%.

A new low dark noise and high quantum efficiency CCD, identical to and interchangeable with that at T150 and also not requiring liquid N2, was installed at T90.

External collaborations

• **SMART Project** (Univ. Huelva), analyzing the interplanetary matter impacting our planet with five robotic cameras at OSN.

• **L3MetSurf Project** (Univ. Granada), testing samples to study material properties and in search for patentable anti-icing solutions.

• **Topo-Iberia station** (Univ. Barcelona), a GPS station used for integrated studies on topography and 4-D evolution.

• **STNS StarTracker Project** (Solar-Mems), a sensor-based pointing subsystem for nano and microsatellites tested at OSN.

• **Master in Astronomy and Astrophysics** (Valencia Intl Univ.), for which observing practices are carried out under an agreement.
The ESFRI initiatives

Square Kilometer Array (SKA)
The Square Kilometre Array (SKA) is an international project to build the world’s largest radio telescope. Thanks to its extraordinary sensitivity, SKA will be able to conduct transformational science, breaking new ground in astronomical observations. Two relevant events took place in 2021 for the SKA, and the IAA was part of them. The first SKA Observatory’s (SKAO) Council meeting was held in February, following the establishment of the SKAO as the world’s second intergovernmental organisation (IGO) dedicated to astronomy. IAA is coordinating the Spanish participation in the SKA project, and is part of the Spanish Delegation in this and subsequent Councils. On the other hand, after a historical meeting of its Council, the SKAO Member States approved the start of the construction phase of the SKA’s telescopes. As part of this construction, Spain was pre-allocated several contracts related to band receivers, timing distribution and dish manufacture, with IAA’s contributing to the associated negotiations. On the other hand, as one of the strategic projects within our Severo Ochoa grant, IAA is prototyping the Spanish node of the international SKA Regional Center (SRC) network, advocating for the principles of Open Science and reproducibility. The development of the SRC includes aspects such as the development of the necessary hardware and software platform, the scientific and technical support to users from the IAA-CSIC, or the establishment of collaborations with national and international centers.

Cherenkov Telescope Array (CTA)
The Cherenkov Telescope Array (CTA) will be the global astronomical very-high-energy (VHE) gamma-ray observatory that will exceed the performance of existing instruments in terms of angular resolution, energy coverage and field of view. It will provide a sensitivity improvement of about an order of magnitude over any previous experiment. In June 2021, Gammapy was selected as the CTA (Cherenkov Telescope Array) Science Tool, a software package for the scientific analysis of the CTA data. Moreover, Gammapy plays an integral role in the science operation workflows of the CTA Observatory itself, as part of the pipelines for science verification. For CTA, the IAA had a leading role on the development of the Gammapy project, both by participation in the Coordination Committee (that takes the high level decisions of the project), and by taking part in the group of main Gammapy developers.

European Solar Telescope (EST)
The European Solar Telescope (EST) will be the largest solar telescope in Europe. With a 4.2-meter primary mirror and state-of-the-art technology, it will provide astronomers with a unique tool to understand the Sun and how it determines near-Earth space weather conditions. In 2021, the project continued preparatory activities for construction, focusing efforts on the design of the telescope and its instruments: the tunable imaging spectropolarimeters, the integral field spectropolarimeters, and the multi-conjugate adaptive optics system. The IAA leads the consortium for tunable imaging spectropolarimeters, one of the core instruments, of which three units are planned to be built. The IAA coordinates the communication office of EST.

European Large Telescope (ELT)
Since 2005, ESO has been developing the Extremely Large Telescope (ELT), a revolutionary ground-based telescope that will have a 39-meter main mirror, making it the world’s largest visible-light and infrared telescope. In 2021, the official start of the Phase B of two new instrumental projects for the ELT, ANDES and MOSAIC, both with IAA participation, was approved by the Council of the European Southern Observatory (ESO). ANDES is a very high resolution spectrograph with several arms or channels covering different wavelength ranges from blue to infrared. MOSAIC is a multi-object spectrograph that will use the widest possible field of view provided by the ELT and will have three modes of operation covering observations in visible and infrared light for more than one hundred sources simultaneously. In 2021, the first MOSAIC hardware prototype was manufactured to perform the testing of the updated version of the instrument control software.

The IAA vis-à-vis the ESFRI initiatives in Astronomy

The European Strategy Forum on Research Infrastructures (ESFRI) was established in 2002 at the request of the European Council, with the aim of coordinating a common strategy on scientific facilities and research infrastructures in Astronomy. The INSTITUTO DE ASTROFÍSICA DE ANDALUCÍA (IAA) participates actively in all the astronomy-related scientific facilities included in the last updated Roadmap (https://roadmap2021.esfri.eu/).
Overview

The OCC was created in 2016 as an instrument to preserve the astronomical sky quality at the Sierra Nevada and Calar Alto observatories against the threat of light pollution. Due to an increase of night sky brightness in recent years, the office aims at serving as a scientific reference for institutions and agents in the protection and improvement of the dark sky, in addition to advising and promoting the best practices for correct outdoor lighting. Illuminating properly and sustainably is essential to preserve the nocturnal ecosystem and minimize the harmful effects to human health. To monitor the sky brightness, the OCC has installed different types of photometers at the Sierra Nevada Observatory and at the IAA buildings.

Highlights and Activities

Research: Several scientific papers were published in 2021 on the study of light pollution from satellite images and RGB photometry for its calibration [52,53,74,257]. We highlight the article on the effects of the COVID-19 lockdown on urban light pollution in Granada between March and May 2020 [44], which has already more than 25 citations in international journals during the first year of publication. We found a clear decrease in light pollution due both to a decrease in light emissions from the city and a decrease in anthropogenic aerosol content in the atmosphere which resulted in a decrease of scattered light. Using ground and nighttime satellite data, a clear correlation between the abundance of PM10 particles and sky brightness is observed at three different wavelength bands. A more exhaustive analysis of this relationship was presented in a Master thesis in Astronomy and Astrophysics (Bustamante-Calabria).

Institutional collaborations: After carrying out a preliminary study on the feasibility of obtaining a night sky quality certificate in the territory of the Granada Geopark, in March 2021 a collaboration contract was signed with the Granada Provincial Council. At the beginning of the year, the Calar Alto Observatory joined the OCC with the incorporation of a member of the observatory. Representing the Sierra Nevada Observatory and together with Calar Alto, the office submitted a series of allegations for the approval of the new Andalusian regulation for protection against light pollution.

The participation in educational and outreach activities is one of the main tasks of the OCC with the aim of raising public awareness on the problem of light pollution. In 2021 we contributed with talks, scientific monologues and radio programs. It was important the participation of office members as teachers at the 2021 summer course on astro-tourism organized by the Andalusian International University.

New equipment: A TESS-4C multicolor photometer was acquired to measure the sky brightness at the Sierra Nevada Observatory. This instrument, equipped with GRB filters, serves as complement to the ASTMON (All-Sky Transmission MONitor) and the 4 SQM (Sky Quality Meters) devices with Johnson-Cousin filters already existing in the observatory building.
Public Outreach

The activities of the IAA-CSIC Communication, Education and Public Outreach Unit cover almost all existing formats to communicate science.

Popular Science Journal IAA: Información y Actualidad Astronómica. Issued once every four months, it is devoted to high school and university students, as well as general public interested in astronomy. Issues in 2021: 63, 64, 65.

Desgranando Ciencia science festival, co-organized by the IAA.

The European Researchers’ Night takes place every year all over Europe the last Friday of September. The IAA-CSIC took part in the event in Granada on Friday 24.

PILISA Project. A multidisciplinary project designed to allow high school students to work with scientists. The IAA-CSIC is the founder of the project.

Course “Astrophysics in the classroom” for primary and secondary school teachers in collaboration with the Granada Teacher Training Centre (CEP Granada).

PRE-EST project (European Solar Telescope). Communication support and recording of the documentary “Reaching for the Sun” [in production].

Revista Astronomía. The IAA maintains a monthly collaboration with the magazine, the only one with a commercial circulation specialised in astronomy.

Lucas Lara outreach talks. These conferences began in 1995. We celebrate nine talks every year.

Double urban campaign on the solar system. The campaign in Granada’s tram cars “Tenemos cerca lo que está muy lejos” and the street marketing circuit GRANADA –DESPIACIO”.

El Radioscopio, a weekly popular-science radio program in collaboration with Canal Sur Radio and broadcasted by Radio Andalucía Información.

Organization of the IV course on Science Outreach Techniques in collaboration with “Hablando de Ciencia” association, and participation in different courses and workshops about science communication.

Perspectiva. Exhibition on Astronomy for the CSIC headquarters in Madrid, related to “Hola Tierra” activities.

Pilares e incertidumbres. IAA-CSIC audiovisual project in which we talk about what we do not know about the universe.

La soledad del navegante. Ciencia y resiliencia. Project that combines science and the performing arts to promote reflection on isolation and adaptation, and their importance in various scientific fields. It targets groups that have suffered particularly badly from confinement during the pandemic.

Calar Alto Observatory Communication. The IAA-CSIC Communication, Education and Public Outreach Unit helps develop communication strategies and press releases for the observatory.

Alfonso X. El rey que quiso ser astrónomo. A show developed by the IAA on Astrophysics and History, with twenty-five voices, six musicians, two actors, and a 6x4 metre projection.

Camino a Congreso. Audiovisual project that is committed to a new format, the music webseries, which combines fiction, science outreach and music. Six episodes.

#TATGranada 2021. International conference on twitter held in Granada every year. The IAA participated as a global partner and speaker.

¿Qué hacen las mujeres ingenieras en ciencia? A roundtable discussion, as an activity for the International Day of Women in Engineering (June 23).

Astronomía Accesible. This project aims at emphasizing the popularization of astronomy among blind and low-vision people.
The research activity carried out at the IAA-CSIC during 2021 can be measured by the number of publications in scientific journals included in the Science Citation Index (SCI), i.e., international journals recognized by their quality and impact. In 2020, this activity resulted in 303 papers published in journals of the SCI.

The complete list of the IAA-CSIC publications in 2021 is given in the Annex at the end of this report. The evolution of the number of SCI publications since 2015 is shown below. Along the years, the number of publications fluctuates around an average value of 275 papers per year.

The publications of the IAA-CSIC are mostly distributed in high impact journals. About 85% of our publications appeared in journals of the first quartile (top 25% journals, or Q1). Among these publications, 7% appeared in the first decile (top 10% journals, or D1). Most of the IAA-CSIC scientific results are published in *Astronomy & Astrophysics* and *Monthly Notices of the Royal Astronomical Society*, the main European astronomical journals. A significant fraction of our results is published in *Astrophysical Journal*, the most important American astronomical journal.

Another aspect of the scientific research of the IAA and its quantitative results is the leadership of these publications. In about 17% of the IAA SCI 2020 publications their first author belongs to our institute. This is consistent with the leadership of the IAA in the last 5 years.

Number of publications by journal

<table>
<thead>
<tr>
<th>Journal</th>
<th>Number of Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astronomy and Astrophysics</td>
<td>82</td>
</tr>
<tr>
<td>Monthly Notices of the Royal Astronomical Society</td>
<td>72</td>
</tr>
<tr>
<td>Astronomical Journal Supplement Series</td>
<td>26</td>
</tr>
<tr>
<td>Astrophysical Journal</td>
<td>13</td>
</tr>
<tr>
<td>Astronomical Journal</td>
<td>9</td>
</tr>
<tr>
<td>Icarus</td>
<td>8</td>
</tr>
<tr>
<td>Geophysical Research Letters</td>
<td>7</td>
</tr>
<tr>
<td>Astrophysical Journal Letters</td>
<td>6</td>
</tr>
<tr>
<td>Experimental Astronomy</td>
<td>5</td>
</tr>
<tr>
<td>Astronomy</td>
<td>4</td>
</tr>
<tr>
<td>Journal of Geophysical Research, Atmospheres</td>
<td>3</td>
</tr>
<tr>
<td>Journal of Physical Review D</td>
<td>3</td>
</tr>
<tr>
<td>Journal of Atmospheric Measurement Techniques</td>
<td>2</td>
</tr>
<tr>
<td>Journal of Quantitative Spectroscopy and Radiative Transfer</td>
<td>2</td>
</tr>
<tr>
<td>Solar Physics</td>
<td>1</td>
</tr>
<tr>
<td>Universe</td>
<td>1</td>
</tr>
<tr>
<td>Nature Advances</td>
<td>1</td>
</tr>
<tr>
<td>Science Advances</td>
<td>1</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
</tr>
</tbody>
</table>

The total number of SCI publications in 2021 is 303.
Workshops & meetings

Meetings

Asymmetrical Post-main-sequence Nebulae 8 e2021: The Shaping of Stellar Outflows
INTERNATIONAL CONFERENCE
Granada, Oct 04 - 08, 2021 [virtual format]
IAA MEMBERS OF THE LOCAL ORGANIZING COMMITTEE: M. Guerrero Roncel
http://apn8.iaa.csic.es

PLATO Mission Conference 2021
INTERNATIONAL CONFERENCE
Granada, Oct 11 - 15, 2021 [virtual format]
IAA MEMBERS OF THE SCIENTIFIC ORGANIZING COMMITTEE: R. Garrido Haba, J. Suárez Yanes
IAA MEMBERS OF THE LOCAL ORGANIZING COMMITTEE: J. Suárez Yanes, J. Rodríguez Gómez, M. Pérez Torres
http://platomissionconference2021.iaa.es/

Horizon Europe: Workshop on RESEARCH INFRASTRUCTURE
NATIONAL WORKSHOP
Granada, Jun 09 - 09, 2021 [virtual format]
http://www.juntadeandalucia.es/actualidad/eventos/detalle/217675.html

Atmospheres, Atmospheres! Do I look like I care about atmospheres? (Atmo 2021)
ESO CONFERENCE
August 23-27, 2021 [online]
IAA MEMBERS OF THE ORGANIZING COMMITTEES: Camilla Danielsky
https://www.eso.org/sci/meetings/2021/Atmo2021.html

IAA Severo Ochoa Advanced School on Star Formation
Granada, Nov 15 - 19, 2021
IAA MEMBERS OF THE ORGANIZING COMMITTEE: R. Schoedel, A. Pelegrina López, M. González García
IAA MEMBERS OF THE SCIENTIFIC ORGANIZING COMMITTEE: R. Schoedel
https://www.granadacongresos.com/starform

SO instrumentation school
Module I: High level syntheses for Xilinx FPGAs using Vivado HLS
Granada, Apr 28 - 30, 2021 [virtual format]
https://forms.gle/FgMLANsyVD6zqSTPA
Module II: Ansys Workbench for Scientific Instrumentation
Granada, Jun 10 - Jul 01, 2021 [virtual format]
https://forms.gle/p7cwZjndRqftKcf39
Module III. Beckhoff Motion Control
Granada, Sep 20 - 23, 2021
https://forms.gle/vyyrVJ5ckXevpvWX9
Module IV. Vacuum Technology
Granada, Oct 20 - 22, 2021
https://forms.gle/Ag46jvhSzGheYJ2H9
Module V. Project management in the 3DExperience environment, including document and requirements management
Granada, Nov 15 - 19, 2021 [virtual format]
https://docs.google.com/forms/d/e/1FAIpQLScpUZj6tFJflf4tE1jz1b85ZbuobXxv10k45IfU9EFbE8E1/viewform
Module VI. A practical introduction to Project Management and Earn Value Management for scientists, engineers and new project managers
Granada, Nov 29 - Dec 03, 2021 [virtual format]
https://forms.gle/gjym896Li2DyoYtOA

SOMACHINE 2 Machine Learning, Big Data, and Deep Learning in Astronomy
Granada, Apr 19 - 23, 2021 [virtual format]
IAA MEMBERS OF THE ORGANIZING COMMITTEE: R. Schoedel
IAA MEMBERS OF THE LOCAL ORGANIZING COMMITTEE: A. Pelegrina López, M. González García
https://www.granadacongresos.com/somachine2021

2nd IAA-CSIC Severo Ochoa School on Statistics, Data Mining, and Machine Learning
Granada, Nov 29 - Dec 03, 2021
IAA MEMBERS OF THE ORGANIZING COMMITTEE: R. Schoedel, A. Pelegrina López, M. González García
https://www.granadacongresos.com/sostat2021

Matplotlib for Beginners - A Brief Severo Ochoa Workshop
Granada, Apr 07 2021 [virtual format]
IAA MEMBERS OF THE ORGANIZING COMMITTEE: A. Díaz Rodríguez, R. Schoedel
https://forms.gle/sgURZsXr4cPeFbt19

An Introduction to IFU Spectroscopy
Granada, Jun 14 - 14, 2021 [virtual format]
https://forms.gle/TeWzd6f5Uta1TM6M

Scientific writing and presentation in astronomy
Granada, Jun 09 - 10, 2021 [virtual format]
IAA MEMBERS OF THE ORGANIZING COMMITTEE: R. Schoedel, M. Pérez Torres
https://forms.gle/c1BbvV4qTu8ucAxPA

IV Course on Scientific Dissemination Techniques
Granada, Sep 15 - 16, 2021
https://granada.hablandodeciencia.com/cursos/

English for Academic Purposes - an online workshop series for young researchers
Granada, Jun 21 - 25, 2021 [virtual format]
https://forms.gle/7eFU4MNlJPARTMA

Spanish for beginners at the IAA-CSIC
Granada, Oct 21, 2021 - Jan 22, 2022
Overview

The IAA is supporting inclusive initiatives in Gender Equality. This trajectory crystallized in the creation of the Institute’s Gender Equality Commission and the preparation and approval of the First Gender Equality Plan of the IAA-CSIC (GEP), in 2018. Here we present the main activities carried out in 2021. The Equality Commission continued its work of advising on the necessary or appropriate measures to actively integrate the principle of gender equality between women and men in the daily life of the centre, as well as in organizing events to raise awareness of the role of women in science.

Highlights

In addition to ensuring the gender equality measure, the Gender Equality Commission of the IAA-CSIC acts as the Gender Working Group of the gender equality plan drawn up by the Severo Ochoa project. All their governance bodies verify the gender equality, and the following actions have been contemplated:

1) Hypatia of Alexandria Visiting Grant: 2 visits of the visiting researchers program, out of the 6 offered, were given to female researchers.
2) Vera Rubin Colloquium: 14 colloquia, out of the 30 offered, were presented by female researchers.

Gender Activities in 2021 in the center

• Production of the annual statistics segregated by gender.
• Organization of activities for the International Day of Women and Girls in Science (11 February). Different informal meetings with women researchers, engineers and technicians at the IAA were held for the educational centers in Granada, with the aim of highlighting the role of women in science. These meetings included open discussions, individual reflections and questions about gender roles and the existing stereotypes around science, technology and engineering. We counted with the participation of Isabel Bustamante, Alice Deconto, Carolina Kherig, Luisa Lara, Mariel Lanes, Susana Martín, Alicia Pelegrina, Rosario Sanz, and Yolanda Teja, from the IAA, as well as students from 3rd course of ESO of IES Lanjarón and the CEIP Abencerrajes and CEIP Alcazaba (11-12 years old). Both activities were done on-line.

We also collaborated with the students of the Liceo Cervantes of Roma within the activity “¿Esta pregunta es para mí?” producing four videos where Sara Cazzoli, Laura Hermosa, Maria Passas and Mónica Vera answered their questions.

• Organization of activities for the International Women’s Day (8 March): We organized a round table under the title “Mujeres de Excelencia” with the participation of three female researchers who lead the Excellence Severo Ochoa project in their centers, namely María Blasco (CNIO), Isabel Márquez (IAA-CSIC) and Teresa Moreno (IDAEA-CSIC). It was chaired by Margarita Sánchez, Vicecounselor of the Universidad de Granada.

• For the day of Women and Girls in Engineering (23 June), a round table was organized with the participation of the female engineers Beatriz Aparicio, María Balaguer, Isabel Bustamante, Carmen Pastor, Susana Sánchez and Rosario Sanz.

• Outreach activities:
 Lourdes Verdes-Montenegro participated in a round table on the gender perspective in international R&I, organized by the Vicepresidency of International Relations of the CSIC.
 Collaboration with the CSIC delegation in Andalusia in the “Moby Dick” podcast: Mayra Osorio, Alicia Pelegrina, Malitide Fernández and María Passas.
 Seven lectures by women researchers from the IAA at the European Researchers’ Night 2021 and the “Desgranando Ciencia” event.

Production and distribution of the webseries “Camino a Congreso” in which the personal and working conflicts of women in science are one of the main drivers of the career. We continued to collaborate with scientific outreach magazines and the newspapers El País, Granada Hoy and Ideal. In the IAA magazine Información y Actualidad Astronómica, several articles were published with the aim of making visible female scientists who have contributed significantly to the development of Astronomy.

• Gender Equality and COVID-19 Questionnaire: An online evaluation survey was launched on October 22nd 2020 among IAA-CSIC members to collect data on the impact of the COVID-19 health crisis actions taken at work. The results were published in March 2021.

• CSIC Gender Equality Commission Meetings: We participated in the second meeting of the CSIC Gender Equality Commissions in November 17th organized by the IFT-CSIC in coordination with the CSIC Gender Equality Commission and in the meeting “Los planes de igualdad en los centros de investigación: intercambio de buenas prácticas”, organized by ICM in November 23rd.

• SOMMA Gender Equality Commission Meetings: In 2021 the SOMMA Gender Equality Working Group was re-activated and we participated in the five online meetings organized along the year. As a result of these working meetings, a survey of the SOMMA centers was elaborated. Moreover, the second SOMMA Gender Working Group event took place in a hybrid format on May 26th, with the participation of the CSIC and the Science Ministry.
Awards

The Inaugural 2021 Jocelyn Bell Burnell Inspiration Medal was awarded to Mirjana Pović (ESSTI and IAA-CSIC) for “her work on developing astronomy, science and education as a route out of poverty and to improve the quality of life for young people in Africa”.

Rocco Lico, a postdoc hired under the Severo Ochoa IAA project, was recognised with an EHT Early Career Award for “his dedication and positive contribution to the EHTC’s management processes and strategy, recognising his unique talent for combining management activities and innovative science”.

Isabel Márquez was awarded in the “Women and Science” category of the “Granada City of Science and Innovation” 2021 awards, highlighting the fact that “not only does she embody the overwhelming force of someone researching in truly complex fields of knowledge, but she also combines this professional facet with activities to promote and raise awareness of the role of women in the truly vast field of astronomy”.

The Scientific Culture Unit of the IAA-CSIC (UCC) was awarded in the category of “Scientific Dissemination”. The UCC was highlighted for its “experience in pioneering activities in all possible languages and formats, which has undoubtedly contributed to the positioning of the IAA-CSIC as a national reference centre in the field of outreach”.

Funding

IAA obtains most of its funding through competitive European and Spanish grants (a total of 7.2 million € was obtained in the 2021 competitive calls).

During 2021, IAA managed a total budget of 14.1 million €, from which 6.8 million € (48%) came from competitive projects and CSIC investments; the other 7.3 million € (52%) corresponded to the permanent staff total cost and common expenses.

The yearly evolution of the IAA budget in the last 5 years is shown below, including the different concepts.
Staff

STAFF RESEARCHERS

Research Professors
Alberdi Odriozola, Antonio María (9)
Castro Tirado, Alberto Javier (9)
del Toso Iniesta, José Carlos (9)
Garrido Haba, Rafael (9)
González Delgado, Rosa María (9)
López Puertas, Manuel (9)
Pérez Jiménez, Enrique (11)
Prada Martínez, Francisco (11)
Vilchez Medina, José Manuel (11)

Scientific Researchers
Aceituno Castro, Jesús (11)
Alfaro Navarro, Emilio Javier (9)
Anglada i Pons, Guillem Josep (9)
Bellot Rubio, Luis Ramón (9)
Furke, Bernd Rainer (7)
Gómez Fernández, José Luis (9)
Guerrero Rencel, Martín (9)
Lara López, Luisa María (9)
Márquez Pérez, Isabel (9)
Masagosa Gallego, Josefa (9)
Moreno Danvila, Fernando (9)
Ortiz Moreno, José Luis (9)
Pérez Montero, Enrique (9)
Pérez Torres, Miguel Ángel (9)
Rodríguez Martínez, Eloy (9)
Schoedel, Rainer (9)
Vérbes-Montenegro Atalaya, Lourdes (9)

Senior Scientists
Agudo Rodríguez, Juan Iván (9)
Amado González, Pedro José (9)
Barceló Serín, Carlos (9)
Ciarán dos Santos, Antonio (9)
del Olmo Orozco, Ascensión (9)
Dufard, René Damián (9)
Fernández Hernández, Matilde (9)
García Bonito, Rubén (9)
García Comas, Maia Leire (9)
Gómez Ríos, José Francisco (9)
Gordillo Vázquez, Francisco José (9)
Gutiérrez Buenestado, Pedro José (9)
Iglesias Páramo, Jorge (9)
López González, María José (9)
López Jiménez, Antonio Carlos (9)
López Valverde, Miguel Ángel (9)
Luque Estepa, Alejandro (9)
Miranda Palacios, Luis Felipe (9)
Muñoz Gómez, Olga (9)
Oliveses Martín, José Ignacio (9)
Perea Duarte, Jaime David (9)
Rodríguez Gómez, Julio Federico (9)
Ruedas Sánchez, José (9)

Ad honorem
Aldaya Valverde, Víctor (9)
López Morenzo, José Juan (9)

Research Advisor
Rodríguez Espinosa, José Miguel (9)

Assigned research group
(1) Solar Physics
(2) Planets and minor bodies
(3) Terrestrial atmosphere
(4) Low-mass stars
(5) Stellar variability
(6) ARAE
(7) HETH
(8) Stellar systems
(9) Physics of the interstellar medium
(10) AGN jets
(11) Galaxy evolution
(12) Theoretical gravitation and cosmology
(13) Observational cosmology
(14) Cosmology and particle physics

Annexes
Associated Doctors

Duarte Puertas, Salvador (11)
Gendron-Marcolais, Marie Lou (11)
Maddox Gil, José María (10)
Pové, Miriana (11)
Sadaghiani, Elyar (10)

Ramón y Cajal Postdocs

Caballero García, María Dolores (11)
de Ugartechristoff, Antonio (10)
Gómez Martín, Juan Carlos (11)
Ontao Suárez, David (11)

Marie Curie Postdocs

Jiménez Teja, Yolanda (10)

Postdocs

Agis González, Beatriz (11)
Alvarez Candal, Álvaro Augusto (11)
Ayaí Gómez, Adrián (11)
Bonoli, Giacomo (11)
Castro Tirado, Miguel Ángel (11)
Cazooli, Sara (11)
Cho, Iije (11)
Damases Segui, Ancor Efren (11)
Danielski, Camila (11)
Darría Gil, Laura (11)
Díaz García, Laura (11)
Domínguez Tagle Paredes, Carlos Humberto (11)
Gallego Calvente, Aurelia Teresa (11)
Gallego Cano, Eulalia (11)
Gardín, Angela (11)
Garrido Sánchez, Julian (11)
Gilli, Gabriella (11)
González Galindo, Francis (11)
Guirado Rodríguez, Daniel (11)
Hess, Kelley Michelle (11)
Hu, Youdong (11)
Ilanjamasimanana, Roger (11)
Jiménez Morales, Manuel Alejandro (11)
Kann, David Alexander (11)
Karunakaran, Aranth (11)
Kühling Martin dos Santos, Carolina (11)

Korsaga, Marie (11)
Lampon González-Albo, Manuel (11)
Li, Dongshuai (11)
Lico, Rocco (11)
Luque Ramírez, Rafael (11)
Manjárres Esquivel, Guillermo (11)
Martíkainen, Julia Anna (11)
Martín Ruiz, Susana (11)
Martínez Delgado, David (11)
Modak, Ashimandra (11)
Moldón Vara, Javier (11)
Osorio Gutiérrez, Mayra Carolina (11)
Parra Roijn, Manuel Jesús (11)
Pascual Granado, Javier (11)
Pereira Breda, Iris (11)
Pérez Invernón, Francisco Javier (11)
Roche, Nathan (11)
Rodríguez López, Cristina Teresa (11)
Sánchez Colín, Ángel Enrique (11)
Sánchez Ramírez, Rubén (11)
Santos Sanz, Pablo (11)
Shahzamanian Sichani, Banafsheh (11)
Shulyak, Denis (11)
Sirpmia Tiapla, Azaymi Litzi (11)
Sorgo, Amidou (11)
Stozenbach, Aurelien (11)
Strocker, Hanna Maria (11)
Thione, Christina C. (11)
Trabouano, Elflahia (11)
Van Vliet Wiegert, Theresa Beatrice Veronica (11)
Zhao, Guangyu (11)

Marie Curie PhD

Kieu, Thi Ny (11)

FPi PhD

Agui Fernández, José Féliciano (11)
Alvarez Miranda, Julián (11)
Arrechea Rodríguez, Julio (11)
Arroyo Poloño, Antonio (11)
Blázquez Calero, Guillermo (11)
Briones Montoro, Adrián (11)
Caló Barón, Roldán Alonso (11)
Conrado Pérez, Ana María (11)

Dorantes Montacuto, Antonio Jesús (11)
Escudero Pedroza, Juan (11)
Ferrer Erezá, Julia (11)
Fuentes Fernández, Antonio (11)
Hernosa Muñoz, Laura (11)
Hill, Brittany Nicole (11)
Malagón Romero, Alejandro Francisco (11)
Martínez Arranz, Álvaro (11)
Martínez Mondejar, Belén (11)
Martínez Solache, Ginés (11)
Montoro Molina, Borja (11)
Moreno Vacas, Alejandro Miguel (11)
Peña Molino, Luis (11)
Pérez Díaz, Borja (11)
Ramón Ballalsta, Alejandro (11)
Rodríguez Martín, Julio Esteban (11)
Santamarina Guerrero, Pablo (11)
Toscano Domingo, Teresa (11)
Vélez Lom醤, Mónica (11)

PhD contract

Deconto Machado, Álise (11)
García Moreno, Gerardo (11)
Lares Martí, Mariel (11)
Malagón Romero, Alejandro Francisco (11)
Schmaltzried, Anthony (11)
Soler López, Sergiu (11)

JAE-Intre

Dahele, Rohan Arun (11)
Dominguez Larraga, Isaac (11)
Molina Rodríguez, Rafael (11)
Muñoz Torres, Sara (11)
Pastor Gómez, Emilio (11)
Prados Albad, Miguel (11)
Salas Moreno, Victor (11)
Sánchez Martínez, David (11)
Tapia del Moral, Mónica (11)
Torres Rios, Gloria (11)
Vázquez Ramos, Alicia (11)

Optics

Atienzar García, Julia
Bailén Martínez, Francisco Javier (11)
Elizalde Mondáverri, Leire (11)
Leggio, Luca (11)
Pérez Medialdea, David

ENGINEERS & TECHNICIANS

Mechanics

Alvarez Moreno, Fernando
Becerril Jáuregui, Santiago
Blazquez Martín, Eduardo
Bustamante Díaz, María Isabel
Calvo Ortega, Rocío
Sánchez Carrasco, Miguel Andrés
Varas González, Roberto (11)

Electronics

Abrioi Martí, Abel
Alvarez García, Daniel (11)
Aparicio del Moral, Beatriz (11)
Balaguer Jiménez, María (11)
Castro Martín, José María (11)
Costillo Iciarri, Luis Pedro
Grela Rejón, Fernando Javier (11)
Herranz de la Revilla, Miguel (11)
Jerónimo Zafra, José María (11)
Jiménez Ortega, Jaime (11)
Labrousse, Pierre (11)
Magan Madinabeitia, Héctor
Martínez Navajas, Ignacio (11)
Morales Palomino, Nicolás Francisco (11)
MORESANT, Antonio Jesús (11)
Ramos Más, José Luis (11)
Robles Muñoz, Nicolás Francisco (11)
Rodríguez Campos, Julio (11)
Sánchez del Río, Justo (11)
Sánchez García, Alejandro (11)
Sánchez Jiménez, Belén (11)
Ruiz del Mazo, José Enrique (11)
Sánchez: Expósito, Susana (11)

OSN maintenance/support

Aceituno Castro, Francisco Jesús Casanova Escurín, Víctor Manuel de la Rosa Alvarez, José Luis Mirasol Junco, José Alberto Pérez Silvente, Tomás
Ruiz Bueno, José Antonio Sánchez Funes, Fernando Sota Ballano, Alfredo

Software

Albarrán, Alba R.A. (11)
Blalé, Martín (11)
Bustamante Calabria, Máximo
García Senda, Emilio Jesús (11)
Gallardo Jiménez, Julio Miguel (11)
Jiménez García, Antonio Jesús
Jiménez González, José Miguel
Jiménez Florentín, Carlos
Jiménez Esteva, Álvaro M
Jiménez García, Manuel Jesús
Jiménez Jiménez del Río, Yrén (11)
Jiménez Zafra, María Isabel
López Fernández, Víctor Arival (11)
Méndez Mora, Martín Elías
Martínez Martínez, Natalia Molina Guerrero, Joselín Pégola López, Alicia
Sánchez Castro, Lorena
Tapia Ruiz, Francisco José Torredonch, Rodrigo Cristiana Villaconde Aparicio, Marcos (11)

Computer center

Bayo Muñoz, Francisco Manuel Guerrero Jiménez, Juan José Parra Garfioño, Rafael

General services

Díaz Molina, José
Morales Delgado, José Francisco
Molina Rodríguez, Antonio
Rendón Martos, Francisco

Library

Arca Sarmiento, María Ángeles

Outreach and communication

García Gómez-Caro, Emilio José Lópe de la Calle Ramos, Silvia
Ongoing projects

AGENCIA ESTATAL DE INVESTIGACIÓN

<table>
<thead>
<tr>
<th>Title</th>
<th>Apoyo a Centros de Excelencia Severo Ochoa</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Isabel Márquez Pérez</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Modelo de repuesto y de vuelo de subsistemas de JANUS y GALA. Formación y evolución de sistemas planetarios: Desde cuerpos menores a exoplanetas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Luisa María Lara López</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Sep 30, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Participación del IAA-CSIC en la misión espacial PLATO2.0. Fases C/D-1. Operación NOMAD-EXOMARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Rafael Garrido Haba, Julio Federico Rodríguez Gómez</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2024</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Física solar espacial</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>José Carlos del Toro Iniesta, David Orozco Suárez</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Dec 31, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Un nuevo instrumento de campo integral para el espectrografo OSIRIS en el Gran Telescopio Canarias</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Francisco Prada Martínez</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2021 - Dec 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Caracterización de la atmósfera de Marte con los instrumentos NOMAD y ACS a bordo de TGO/EXOMARS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Miguel Ángel López Valverde</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Sep 30, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Sistema de observación de la mitad de la bóveda celeste en la nueva era de astrofísica de multimensajeros</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Alberto Javier Castro Tirado</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2018 - Mar 31, 2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>ONGAMI7: Gas y campos magnéticos en entornos extremos de galaxias con los precursors de Ska - desde el diseño del flujo de datos hacia su construcción</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Lourdes Verdes-Montenegro Atalaya</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Dec 31, 2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Aguerejos negros supermasivos y Jets relativistas</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>José Luis Gómez Fernández, Juan Iván Agudo Rodríguez</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Jets estelares, discos y campos magnéticos. Ciencia para el Ska y contribución al diseño de Phased Array Feeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Guillam Josep Anglada i Pons, José Francisco Gómez Rivero</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Sep 30, 2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Los galácticos de la galaxia: Estrellas masivas, cúmulos estelares y el centro galáctico</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Rainer Schoedel, Emilio Javier Alfaro Navarro</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Dec 31, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Galaxias en 3D y sus propiedades integradas: sinergia entre J-PAS/J-PLUS e IFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Rosa María González Delgado</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Cielos y universos para los grandes cartografados de galaxias: Exploitaclión científica</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>José Manuel Vílchez Medina, Jorge Iglesias Páramo</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Telescopio extremadamente ligero</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>José Luis Ortiz Moreno</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2018 - Mar 31, 2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Legado del proyecto Small bodies near and far</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Pablo Santos Sanz</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Dec 31, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>GRBpsot - Base de datos fotométricos de explosiones de rayos gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>David Alexander Kann</td>
</tr>
<tr>
<td>Dur.</td>
<td>Sep 01, 2019 - Aug 31, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>GRBpsot - Base de datos fotométricos de explosiones de rayos gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>David Alexander Kann</td>
</tr>
<tr>
<td>Dur.</td>
<td>Sep 01, 2019 - Aug 31, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Contribución del IAA a la explotación científica de ASIM: Experimentos, observaciones desde suelo, análisis de datos y modelización</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Francisco José Gordillo Vázquez</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - Dec 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Comprensión de la actividad nuclear en galaxias: De las bajas a las altas tasas de acreción</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Isabel Márquez Pérez, Ascensión del Olmo Orozco</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Galaxias en 3D y sus propiedades integradas: sinergia entre J-PAS/J-PLUS e IFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Rosa María González Delgado</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Contribución del IAA a la explotación científica de ASIM: Experimentos, observaciones desde suelo, análisis de datos y modelización</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Francisco José Gordillo Vázquez</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - Dec 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Comprensión de la actividad nuclear en galaxias: De las bajas a las altas tasas de acreción</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Isabel Márquez Pérez, Ascensión del Olmo Orozco</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Galaxias en 3D y sus propiedades integradas: sinergia entre J-PAS/J-PLUS e IFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Rosa María González Delgado</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Cielos y universos para los grandes cartografados de galaxias: Exploitaclión científica</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>José Manuel Vílchez Medina, Jorge Iglesias Páramo</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jun 01, 2020 - May 31, 2023</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Telescopio extremadamente ligero</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>José Luis Ortiz Moreno</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2018 - Mar 31, 2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>Legado del proyecto Small bodies near and far</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>Pablo Santos Sanz</td>
</tr>
<tr>
<td>Dur.</td>
<td>Jan 01, 2019 - Dec 31, 2022</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title</th>
<th>GRBpsot - Base de datos fotométricos de explosiones de rayos gamma</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI</td>
<td>David Alexander Kann</td>
</tr>
<tr>
<td>Dur.</td>
<td>Sep 01, 2019 - Aug 31, 2022</td>
</tr>
</tbody>
</table>
REGIONAL GOVERNMENT JUNTA DE ANDALUCÍA

Title: Acciones para el fortalecimiento del IAA-CSIC para la adquisición del sello “Severo Ochoa”

Ref. SOMM17/05288/IAA

Dt: Jan 01, 2019 - Feb 28, 2022

Pl: Antonio María Alberdi Ondrizola

Title: Excelencia científica y tecnológica en el IAA-CSIC, OSN, UDIT y Centro de Cálculo

Ref. IE19_242_C SIC-IAA

Dt: Dec 28, 2020 - Dec 27, 2022

Pl: Antonio María Alberdi Ondrizola

Title: Stellar Tidal Streams in the Local Universe as Cosmological Diagnostic

Ref. TASE-136

Dt: Oct 01, 2020 - Sep 30, 2023

Pl: David Martínez Delgado

Title: Acciones para la optimización de observatorios astronómicos en Andalucía

Ref. IE-2017-5259

Dt: Mayo 01, 2020 - Apr 30, 2022

Pl: Antonio María Alberdi Ondrizola

Title: LUCA: Revelando la estructura fi na de las galaxias del Universo Local con espectroscopía 3D

Ref. P18-FRJ-2595

Dt: Oct 01, 2020 - Nov 30, 2023

Pl: Rubén García Benito

Title: Supermassive black holes and blazar jets

Ref. P18-FR-1769

Dt: Jan 01, 2020 - Jun 30, 2023

Pl: José Luis Gómez Fernández

Title: Propiedades físicas del polo cometary y aplicaciones biomédicas

Ref. P18-RT-1854

Dt: Jan 01, 2020 - Dec 31, 2022

Pl: Fernando Moreno Danvila, Olga Muñoz Gómez

Title: Estudiando galaxias juveniles con tecnología de vanguardia: piezas clave de la evolución del Universo

Ref. P18-FR-2646

Dt: Jan 01, 2020 - Dec 31, 2022

Pl: Jorge Iglesias Páramo

Title: Objetos Transneptunianos y otros remanentes de la formación del sistema solar

Ref. P20_01309

Dt: Oct 05, 2021 - Dec 31, 2022

Pl: José Luis Ortiz Moreno

Title: Descifrando la Vía Láctea: Minería de datos y herramientas numéricas para la explotación de grandes cartografíados galácticos

Ref. P20_00753

Dt: Oct 05, 2021 - Dec 31, 2022

Pl: Emilio Javier Alfaro Navarro

Title: Imaginología y polarimetría en el ultravioleta cercano para aplicaciones espaciales (NUVIP)

Ref. P20_01307

Dt: May 05, 2021 - Dec 31, 2022

Pl: David Orozco Suárez

Title: Detección y caracterización de los sistemas planetarios en estrellas análogas. M. Entendiendo su estrella y sus planetas

Ref. P20_00737

Dt: Oct 05, 2021 - Dec 31, 2022

Pl: Pedro José Amado González

Title: Construction of the Calar Alto Schmidt-Lemaître Telescope (CASTLE), a technology demonstrator for curved detectors

Ref. P20_00737

Dt: Oct 05, 2021 - Dec 31, 2022

Pl: Francisco Prada Martínez

Title: Explorando la formación y supervivencia planetaria en condiciones extremas

Ref. P20_00880

Dt: Oct 05, 2021 - Dec 31, 2022

Pl: Mayra Carolina Osorio Gutiérrez

Title: Aprendizaje artificial aplicado a simulaciones de transporte Montecarlo: aplicación a la producción de rayos X en descargas eléctricas

Ref. P20_00831

Dt: Oct 05, 2021 - Dec 31, 2022

Pl: Alejandro Luque Estopa

Title: En camino hacia SKA: Astronomía a la más alta resolución angular y sensibilidad

Ref. PGC2018-098915-B-C21

Dt: Oct 01, 2019 - Sep 30, 2022

Pl: Fernando Moreno Danvila, Olga Muñoz Gómez

Title: Propiedades físicas del polvo cometario

Ref. P18-FR-1769

Dt: Jan 01, 2020 - Jun 30, 2023

Pl: José Luis Gómez Fernández

Title: Búsqueda de corrientes estelares de marea en el universo local con cartografiados de imagen

Ref. P18-FRJ-2595

Dt: Oct 01, 2020 - Sep 30, 2023

Pl: David Martínez Delgado

Title: El universo cuántrico gravitacional: Espacietiempos efectivos y sus fluctuaciones cuánticas

Ref. P18-114581GB-C21

Dt: Sep 01, 2021 - Aug 31, 2022

Pl: David Martínez Delgado

Title: Una perspectiva planetaria sobre cambio climático: Marte y la evolución del agua

Ref. RT18-100920_J-100

Dt: Oct 01, 2019 - Sep 30, 2022

Pl: Francisco González Galindo

Title: Física de los objetos transneptunianos y poblaciones relacionadas

Ref. PID2020-112789GB-I00

Dt: Sep 01, 2021 - Aug 31, 2024

Pl: José Luis Ortiz Moreno

Title: Detección de fenómenos transitorios haciendo uso de instrumentación robótica con alta resolución temporal

Ref. PID2020-118419GB-I00

Dt: Sep 01, 2021 - Aug 31, 2024

Pl: Alberto Javier Castro Tirado

Title: De los exoplanetas a los agujeros negros supermassivos: La exploracion de las fronteras

Ref. PID2020-117404GB-C21

Dt: Sep 01, 2021 - Aug 31, 2022

Pl: Miguel Ángel Pérez Torres

Title: Astronomía de rayos gamma con MAGIC y CTA-NORTE - contribución del IAA-CSIC

Ref. RTI2019-107947GB-C44

Dt: Jun 01, 2020 - May 31, 2023

Pl: Juan Iván Agudo Rodríguez

Title: Física oculta en la evolución en tiempo real de las nebulosas gaseosas en torno a estrellas evolucionadas de masa baja e intermedia

Ref. PGC2018-102184B-I00

Dt: Dic 30, 2016 - Mar 29, 2021

Pl: Martín Guerrero Roncel

Title: Universo y vacío cuánticos

Ref. FIS2017-86497-C2-1-P

Dt: Oct 01, 2019 - Sep 30, 2022

Pl: Carlos Barceló Serón

Title: Red temática para la participación científica y tecnológica española en el SKA

Ref. RED2018-102598-T

Dt: Jan 01, 2020 - Dec 31, 2022

Pl: Lourdes Verdes-Montenegro Atalaya

Title: Sistemas planetarios a lo largo de la evolución estelar

Ref. PID2020-114461GB-I00

Dt: Sep 01, 2021 - Aug 31, 2024

Pl: Guillem Josep Anglada i Pons
EUROPEAN PROGRAM FUNDS

- **Title:** e-LIGHTING: Lightning propagation and high-energy emissions within coupled multi-model simulations
 | Ref. | PI: Alejandro Luque Estepa | Dur.: Jun 01, 2016 - May 31, 2021

- **Title:** Preparatory Phase for the European Solar Telescope (PRE-EST)
 | Ref. | PI: Luis Ramón Bellot Rubio | Dur.: Apr 01, 2017 - Dec 31, 2021

- **Title:** Science and Innovation with thunderstorms (SAINT)- H2020-MSCA-ITN-2016
 | Ref. | PI: Olga Muñoz Gómez | Dur.: Nov 01, 2020 - Oct 31, 2023

- **Title:** R0G and impAct of Dust and clouds in the Martian Atmosphere: from lab to space (ROADMAP)
 | Ref. | PI: Yolanda Jiménez Teja | Dur.: Apr 01, 2020 - Mar 31, 2022

- **Title:** CICLE -- Unveiling the formation and evolution of galaxy clusters through the intracluster light and multidisciplinary techniques of image processing and big data analysis
 | Ref. | PI: Yolanda Jiménez Teja | Dur.: Apr 01, 2020 - Mar 31, 2022

- **Title:** SOLARNET - 824135- Integrating High Resolution Solar Physics - H2020
 | Ref. | PI: Luis Ramón Bellot Rubio | Dur.: Jan 01, 2019 - Dec 31, 2022

- **Title:** ESCAPE-European Science Cluster of Astronomy & Particle physics ESFRI research infrastructures
 | Ref. | PI: Lourdes Verdes-Montenegro Atalaya | Dur.: Feb 01, 2019 - Jul 31, 2022

MINISTERIO DE CIENCIA E INNOVACIÓN

- **Title:** Coordinación de la participación científica y tecnológica de España en el Square Kilometre Array. Oficina española del SKA.

- **Title:** Ayuda del MICIIN para la coordinación de la participación en SKA-españa
 | Ref. | PI: Lourdes Verdes-Montenegro Atalaya | Dur.: Jan 01, 2021 - Dec 31, 2021

FECyT

- **Title:** Horizontes de Luz
 | Ref. | PI: Julio Federico Rodríguez Gómez | Dur.: Dec 06, 2021 - Dec 05, 2026

CDTI

- **Title:** Convenio CSIC-CDTI para la ejecución del Proyecto «Modelos de Vuelo para la MEU (Unidad de la Electrónica Principal) de PLATO»
 | Ref. | PI: Yolanda Jiménez Teja | Dur.: Jul 01, 2021 - June 30, 2022

PhD Theses

- **Title:** Disk and jets in the formation of multiple stellar systems
 | Author: Ana Karla Díaz Rodríguez | Sup.: Alejandro Luque Estepa | Univ.: Universidad de Granada | Date: Feb 10, 2021

- **Title:** Numerical investigation on the advance of leader channels in lightning and long sparks
 | Author: Alejandro Francisco Malagón Romero | Sup.: Alejandro Luque Estepa | Univ.: Universidad de Granada | Date: Mar 23, 2021

- **Title:** Characterisation of exoplanetary upper atmospheres undergoing hydrodynamic atmospheric escape
 | Author: Manuel Lampón González-Albo | Sup.: Universidad de Granada | Date: Mar 24, 2021

- **Title:** Properties of galaxies in galaxy clusters up to a redshift of z ~ 1
 | Author: Zeleke Beyoro Amado | Sup.: Universidad de Granada | Date: May 31, 2021

- **Title:** Non-linear terms in Delta Scuti stars power spectra
 | Author: Mariel Lares Martiz | Sup.: Rafael Garrido Haba, Javier Pascual Granado | Univ.: Universidad de Granada | Date: Jun 11, 2021

- **Title:** Spectropolarimetric and imaging properties of Fabry-Perot etalons. Applications to solar instrumentation
 | Author: Francisco Javier Bailén Martínez | Sup.: José Carlos del Toro Iniesta, David Orozco Suárez | Univ.: Universidad de Granada | Date: Jun 25, 2021

- **Title:** Position on the Hertzsprung-Russell diagram of magnetically active young stars
 | Author: Estefania Casal López | Sup.: Estefania Casal López | Univ.: Universidad de Granada | Date: Jul 02, 2021

- **Title:** High angular resolution radio observations of luminous infrared galaxies
 | Author: Naim Ramírez Olivencia | Sup.: Estefania Casal López, Miguel Angel P rez Torres | Univ.: Universidad de Granada | Date: Jul 05, 2021
New windows onto the stellar population at the Galactic Centre: multi-wavelength and time-domain studies
Author: Aurelia Teresa Gallego Calvente
Sup.: Rainer Schoedel
Univ.: Universidad de Granada
Date: Jan 8, 2021

Multi-wavelength study of GRBs detected by Fermi and Swift
Author: Youdong Hu
Sup.: Alberto Javier Castro Tirado, Binbin Zhang
Univ.: Universidad de Granada
Date: Jul 21, 2021

Ultra-fast time-resolved spectroscopy
Author: Thi Ny Khou
Sup.: Francisco José Gordillo Vázquez, Alejandro Luque Estepa
Univ.: Universidad de Granada
Date: Oct 14, 2021

Variability of the planetary nebula M3-27
Author: David Enrique Rodríguez Granados
Sup.: Luis F. Miranda and Lorenzo Olguín
Univ.: Valencia International University
Date: 8 November 2021

The History of the Galactic Center told by its Brightest Stars
Author: Andreas Eckart, Dr. Rainer Schoedel
Sup.: University of Cologne, Germany
Date: 18/11/2021

Detección de eventos transitorios mediante procesamiento de imágenes astronómicas
Author: Ignacio Pérez-García
Sup.: Alberto J. Castro-Tirado
Univ.: Valencia International University
Date: 11 November 2021

Catálogo HOPS sobre discos y jets asociados a estrellas muy jóvenes en Orión
Author: Flarin Placinta Alexandru
Sup.: Mayra Osorio, Guillermo Blazquez (mentor)
Univ.: Granada
Date: 21 September 2021

Evolución Estelar en Tiempo Real
Author: Francisco Peraza
Sup.: Javier Pascual Granado
Univ.: Valencia International University
Date: 06/2021

Subestructuras en el espacio-fase de la región de formación estelar de Mon OB1
Author: Llanos Martínez Fernández
Sup.: Emilie J. Allard
Univ.: Valencia International University
Date: April 14th, 2021

Light Scattering in discs protoplanetarios
Author: María de la Concepción Jiménez Serrano
Sup.: Daniel Gurado Rodríguez
Univ.: Valencia International University
Date: June 30th

Stellar Tidal Streams around Milky Way analog galaxies
Author: Silvia Ferrás Aloy
Sup.: Dr. David Martínez Delgado
Univ.: Valencia International University
Date: 10 November 2021

Búsqueda de galaxias de bajo brillo superficial en el entorno de galaxias masivas cercanas
Author: Antonio Paradell Bonida
Sup.: Dr. David Martínez Delgado
Univ.: Valencia International University
Date: 10 November 2021

Búsqueda de cúmulos globulares en la corriente estelar de la galaxia del Sombrero M104
Author: Francisco Javier Riquel Castilla
Sup.: Dr. David Martínez Delgado
Univ.: Valencia International University
Date: 10 November 2021

Clasificación morfológica de corrientes estelares
Level: Master thesis
Author: Juan Emiliano Vejarano Bolívar
Sup.: Dr. David Martínez Delgado
Univ.: Valencia International University
Date: 28 Junio 2021

Estudio de la relación entre el brillo del cielo nocturno y la contaminación por aerosoles en un entorno urbano.
Level: Trabajo Fin de Master
Author: Maximá Bustamante Calabria
Sup.: Susana Martín Ruiz and Alejandro Sánchez de Miguel
Univ.: Valencia International University
Date: 05/07/2021

Búsqueda de galaxias de bajo brillo superficial en el entorno de galaxias masivas cercanas
Author: Antonio Paradell Bonida
Sup.: Dr. David Martínez Delgado
Univ.: Valencia International University
Date: 10 November 2021

Búsqueda de cúmulos globulares en la corriente estelar de la galaxia del Sombrero M104
Author: Francisco Javier Riquel Castilla
Sup.: Dr. David Martínez Delgado
Univ.: Valencia International University
Date: 10 November 2021

Clasificación morfológica de corrientes estelares
Level: Master thesis
Author: Juan Emiliano Vejarano Bolívar
Sup.: Dr. David Martínez Delgado
Univ.: Valencia International University
Date: 28 Junio 2021

Estudio de la relación entre el brillo del cielo nocturno y la contaminación por aerosoles en un entorno urbano.
Level: Trabajo Fin de Master
Author: Maximá Bustamante Calabria
Sup.: Susana Martín Ruiz and Alejandro Sánchez de Miguel
Univ.: Valencia International University
Date: 05/07/2021

Gradientes de metalicidad del gas en galaxias barradas de baja masa
Author: Silvia García Soto
Sup.: Isabel Pérez & Rubén García-Benito
Univ.: Universidad de Granada
Date: 21-07-2021

Analysis of integral-field spectroscopic data
Author: Rubén García-Benito
Univ.: Universidad Autónoma de Madrid
Date: 05-11-2021

Medio Interestelar
Author: Enrique Pérez Jimenez, Angeles Díaz, Elena Tertivic
Univ.: Universidad Autónoma de Madrid
Date: January-June 2021

Modern Observational Techniques in Astronomy
Author: Mirjana Povic
Univ.: Universidad Autónoma de Madrid
Date: January-June 2021

Stellar interior and evolution, and radiation measurements in astrophysics
Author: Mirjana Povic
Univ.: Universidad Autónoma de Madrid
Date: January-June 2021

Obervational Techniques in Astronomy
Author: Mirjana Povic
Univ.: Universidad Autónoma de Madrid
Date: January-June 2021

Introduction to Astrophysics
Author: Mirjana Povic
Univ.: African School of Physics (ASP)
Date: July/2021
Título: Técnicas Observacionales en Astrofísica
Tec.:
Simon Verley, Alberto Javier Castro Tirado, Martin Guerrero Roncel
Prog.:
Master en Física y Matemáticas (FISyMAT)
Univ.:
Universidad de Granada
Hrs.:
30
Fecha:
February-June 2021

Título: The XXI century radio observatory: the Square Kilometer Array (SKA)
Tec.:
Javier Moldón
Prog.:
Máster Universitario en Astronomía y Astrofísica
Univ.:
Valencia International University
Hrs.:
2
Fecha:
02/12/2021

Título: Astrobiología y planetas extrasolares.
Tec.:
M. López Puertas
Prog.:
Máster Universitario en Física: Radiaciones, Nanotecnología, Partículas y Astrofísica
Univ.:
Universidad de Granada
Hrs.:
10
Fecha:
May 2021

Título: Radioastronomía
Tec.:
Jose Francisco Gomez, Guillem Anglada, Antonio Alberdi, Angela Gardini
Prog.:
Master en Física y Matemáticas (FISyMAT)
Univ.:
Universidad de Granada
Hrs.:
60
Fecha:
September 2020- March 2021; September 2021- March 2022

Título: Otros Sistemas Solares: Nacimiento planetario
Tec.:
Mayra Osorio
Prog.:
El sistema solar y la exploración espacial en el aula: potenciando nuevas vocaciones científicas
Org.: Consejería de Educación y Deporte, Junta de Andalucía
Hrs.:
2
Fecha:
5 April 2021- 30 May 2021

Título: Origen y evolución de los elementos químicos en el Universo. Parte II.
Tec.:
Jose Manuel Vilchez Medina
Prog.:
Máster Universitario en Física: Radiaciones, Nanotecnología, Partículas y Astrofísica
Univ.:
Universidad de Granada
Hrs.:
10
Fecha:
7-21 March 2021

Título: Física de detectores
Tec.:
Jorge Iglesias Páramo (IAA-CSIC)
Prog.:
Máster Universitario en Física: Radiaciones, Nanotecnología, Partículas y Astrofísica
Univ.:
Universidad de Granada
Hrs.:
15
Fecha:
November 2021

Título: El Cielo desde Sierra Nevada
Tec.:
Jose Manuel Vilchez Medina
Prog.:
Sierra Nevada: naturaleza y recursos
Univ.:
Universidad Internacional de Andalucía, UNIA
Hrs.:
6
Fecha:
6-9 September 2021

Título: Aproximación a la Astronomía
Tec.:
Miguel Pérez-Torres
Prog.:
Programa de formación para mayores de 55 años y jubilados
Univ.:
Universidad de la Experiencia de Zaragoza
Hrs.:
20
Fecha:
March-May 2021

Título: Cosmología y Galaxias
Tec.:
Mar Basteiro and Emilio J. Alfaro
Prog.:
Máster Universitario en Astronomía y Astrofísica
Univ.:
Universidad de Granada
Hrs.:
10
Fecha:
January 2021

Título: Astrofísica Extragaláctica
Tec.:
David Martínez Delgado
Prog.:
Master Universitario en Astronomía y Astrofísica
Univ.:
Valencia International University
Hrs.:
14
Fecha:
July- October 2021

Oxygen found in the atmosphere of the hottest known exoplanet
22/12/2021
A team with the participation of the IAA-CSIC published the discovery of oxygen atoms in KELT-9b, the first detection of this compound in an exoplanetary atmosphere

Distinct pulses captured in the giant magnetic flare from a neutron star
22/12/2021
In just a tenth of a second, a magnetar—a particularly strongly magnetized neutron star—released energy equivalent to that produced by the Sun in 100,000 years. Its detailed study revealed multiple pulses at the peak of the eruption, which will make it possible to understand these still little-known giant magnetic flares

The dramatic final dance of stars with shared envelope
16/12/2021
The IAA-CSIC participated in the study of fifteen peculiar stars; they turned out to be double stars that, after sharing an envelope, lost a large part of their mass

Double helix structure observed in the jet emanating from the black hole in M87 galaxy
07/12/2021
Produced by the magnetic field, it is the first time that this structure was observed at such far distances from the black hole. The IAA-CSIC participated in the discovery
Giant planets could reach maturity sooner than expected
02/12/2021
The IAA-CSIC participated in the study of the giant planets of the V1298 Tau system, which in just twenty million years already reached their final size. The finding was possible thanks to radial velocity measurements from the HARPS-N spectrograph, at the Roque de los Muchachos Observatory (ORM), and from CARMENES, at the Calar Alto Observatory (CAHA).

The researcher Isabel Márquez and the Outreach Department at the IAA-CSIC, received "Granada Ciudad de la Ciencia y la Innovación" awards” 01/12/2021
The aim of these awards is to recognise and disseminate the excellent scientific activity in the area of Granada.

On fire and in the process of breakind up by its star companion 25/11/2021
Found a system formed by a white dwarf star and a small object, possibly a planet, so close that the second is scorched by the star’s radiation, causing its atmosphere to evaporate.

Discovery of a possible satellite galaxy of M33, a neighbouring Local Group galaxy 17/11/2021
M33, also known as the Triangle galaxy, is the third largest galaxy in the Local Group, after Andromeda and the Milky Way. The finding was part of the search for the "lost satellites", which tries to resolve the discrepancy between the galaxy formation models and the observations of the Local Group galaxies.

New perspectives on the problem of galaxies without dark matter 11/11/2021
The discovery of numerous very low surface brightness galaxies in the environment of NGC 1052 provided a crucial clue to the debate about the lack of dark matter in some galaxies of this group. The new data pointed to the existence of a group of galaxies closer than NGC 1052, to which these anomalous galaxies would belong, and the proximity would solve the problem.

Rocco Lico awarded with a 2021 EHT Early Career Award 23/10/2021
Rocco Lico’s outstanding contributions to the EHT was recognised in the second annual EHT Early Career and Outstanding PhD Awards for "his dedication and positive contribution to the EHTC’s management processes and strategy, recognising his unique talent for combining management activities and innovative science”.

Planetary system found similar to the future of the Solar System after the Sun’s death 13/10/2021
Scientists from the IAA-CSIC were involved in the discovery of a system formed by a white dwarf star and a planet similar to Jupiter. The discovery, published in Nature, showed that planets can survive the death of their star.

Light pollution increased by at least 49% in the last 25 years 27/09/2021
The study only included data from satellites, very limited for the detection of blue light (the most polluting), so that the real increase could amount to 270% globally. The investigation revealed the seriousness of a problem that, according to experts, would worsen if the draft Royal Decree for energy efficiency were approved favouring the use of blue light.

Remnants of the historic supernova of 1181 suggested it originated from the merger of two stars 22/09/2021
Chinese and Japanese texts documented the appearance of a supernova in the year 1181, and in 2021 the remnant of that explosion was located.

The IAA participated in the development of ‘Uchuu’, the most accurate and complete simulation of the universe. 14/09/2021
An international team of researchers developed the most realistic simulation of the universe to date. The creation, named ‘Uchuu’ (which means universe in Japanese) was made possible thanks to ATERUI II, the most powerful supercomputer in the world, built by the National Astronomical Observatory of Japan (NAOJ) to facilitate the understanding of different astronomical phenomena from a theoretical point of view.

The most detailed images of galaxies were obtained thanks to LOFAR, a network of 70,000 antennas 27/08/2021
The IAA-CSIC headed one of the eleven articles that were obtained thanks to LOFAR, a network of 70,000 antennas, by the Event Horizon Telescope (EHT) collaboration, in which the IAA-CSIC participates, showed in unique detail the heart of Centaurus A, the most realistic simulation of the universe to date.

New technique to detect, without contact, virusses on surfaces 10/08/2021
Based on the use of hyperspectral images and data processing with advanced statistics and artificial intelligence, it was successfully applied in two synthetic models of SARS-CoV-2. The research, which continues in humans, was funded by the Carlos III Health Institute and made it possible to patent a technique capable of simultaneously analyzing numerous samples without the need for contact or reagents.

The Perseid meteor shower arrived 02/08/2021
The Perseids are produced by the impact in our atmosphere of fragments of the meteoroid cloud of Comet 109P/Swift-Tuttle, and are also recorded on the surface of the Moon. During the peak, around August 11, up to fifty perseids per hour could be observed in places away from light pollution.

Small force, big effect: how planets can affect the Sun 29/07/2021
The IAA-CSIC is involved in developing a theory that supports the hypothesis that planets affect the Sun's magnetic activity. It shows how the small influence of the planets could set a rhythm in a system like the Sun that, if confirmed, would allow events such as solar storms to be predicted more accurately.

The massive star that barely shone upon death 24/07/2021
The IAA-CSIC participated in two articles that disseminated the discovery of the shortest gamma ray burst (GRB) produced by the death of a massive star ever detected.

The enigmatic assembly process of the Sombrero galaxy 21/07/2021
The Sombrero galaxy, a strange hybrid between a spiral and an elliptical galaxy, was observed in detail to look for clues about its formation process. Unless a large elliptical structure surrounding the galaxy, probably the result of a minor merger with another galaxy, was characterised, the origin of its shape remains unknown.

The Event Horizon Telescope (EHT) pinpointed the central black hole of the galaxy Centaurus A 19/07/2021
The EHT collaboration, in which the IAA-CSIC participates, showed in unique detail the heart of Centaurus A, from which gigantic jets of matter emerge.

MeerKAT discovered a group of galaxies hidden in a well-studied region 15/07/2021
Its abundance of neutral hydrogen suggests that it is a group of galaxies in the process of formation.
CARMENES instrument found two new planetary systems formed by Earths and super-Earths
30/04/2021
The IAA-CSIC led the detection of what, according to the data, is the most common type of planetary systems around dwarf stars, the most common stars in the Milky Way.

Noctilucent clouds observed from the Observatory of Sierra Nevada
24/04/2021
Noctilucent clouds were observed from the Sierra Nevada Observatory (DSN). The presence of this type of cloud is considered as an indicator of climate change and for years they have been observed at increasingly lower latitudes. This is one of the first times that they were observed from Granada.

CAIRT mission, with the participation of the IAA-CSIC, candidate for ESA’s Earth Explorer 11 programme
16/06/2021
The mission will focus on processes combining atmospheric circulation, composition, space weather and regional climate change, and will provide critical observations not available with existing or planned satellites.

IAA researchers published the most detailed star catalogue of the Galactic Centre
08/04/2021
The GALACTICNUCLEUS project makes it possible to study the stellar population surrounding the supermassive black hole at the Galactic Centre in unprecedented detail. The work, led by the IAA-CSIC, offered the most extensive census of stars in the Galactic Core recorded to date.

Juice mission prepared for its extreme environmental test
24/06/2021
The JUICE mission, led by the European Space Agency (ESA), will study Jupiter and its moons to analyse the possibilities for the development of life around gas giant planets. The IAA-CSIC participates in two of the mission’s instruments, the GALA laser altimeter and the JANUS camera.

Presentation of the project “Hello Earth”
30/04/2021
The IAA-CSIC welcomed the presentation of the project of the musician Antonio Arias based on the poems of the astronaut Al Worden. The project, which had the participation of the Cervantes Institute and the IAA-CSIC, includes an album, a book and a documentary.

A method to study distorted white dwarf stars was developed
26/04/2021
The IAA-CSIC led a study to determine the properties of stars that, either because of rapid rotation or because they are in a very compact double system subject to strong tidal forces, showed a flattened shape.

OPTICON-Radionet PILOT (ORP), the largest astronomy network in Europe, was born
16/04/2021
Two astronomy networks came together to form the largest collaborative ground-based astronomy network in Europe.

What ignites the helium halos of early galaxies remains a mystery
12/04/2021
A study led by IAA-CSIC targetted the galaxy IZw18, an analogue of the first galaxies that appeared in the universe, for understanding the origin of the radiation that produces a helium halo around it.

MAAT: new “eyes” for the OSIRIS instrument of the Gran Telescopio Canarias (GTC)
30/03/2021
MAAT, a visiting GTC instrument in the preliminary design phase, planned to bring the technique known as integral field spectroscopy to the OSIRIS instrument.

Astronomers Imaged Magnetic Fields at the Edge of M87’s Black Hole
24/03/2021
The Event Horizon Telescope (EHT) reached a new milestone in astronomical observation by analyzing M87’s supermassive black hole in polarized light.

Observed for the first time a jet of gas as it emerges from the central star of a planetary nebula
10/03/2021
Thanks to MEGARA instrument of the Gran Telescopio Canarias, researchers from the IAA-CSIC observed and analyzed the jet of NGC 2392, which points to the existence of a companion star.

A Super-Earth well suited for atmospheric studies was found
04/03/2021
The IAA-CSIC participated in the discovery of a planet around the red dwarf star Gliese 486, a system placed at 26 light years from us.

Researcher Mirjana Povic received the Jocelyn Bell Burnell Award from the European Astronomical Society
02/03/2021
Researcher at the European Institute of Space Science and Technology and a vinculated doctor to the IAA-CSIC, she investigates the formation and evolution of galaxies. She works in the development of science and education in Africa, with a special focus on the role of women, with projects in Ethiopia, Uganda, Rwanda, Tanzania, South Africa, Kenya and Ghana.

The Exoplanet Revolution
23/02/2021
Didier Queloz, 2019 Nobel Prize in Physics for the discovery of the first exoplanet around a star similar to the Sun, will give a seminar on the planetary systems found to date and their implications for our vision of the universe.

The IAA Advanced School of Planetary Systems, open to the public
15/02/2021
Organized within the framework of the IAA Severo Ochoa-IAA project, it addresses our knowledge of exoplanetary systems from a broad and updated context.

ExoMars mission discovered new gas and tracks water loss on Mars
10/02/2021
The ExoMars-TGO orbiter, from the European Space Agency and Roscosmos, found hydrogen chloride in the Martian atmosphere, produced by the release of salt embedded in the planet’s surface. The ExoMars data also allowed quantifying the loss of water on the red planet and establishing the mechanisms that contribute to the process.

The largest radioastronomy observatory in the world, SKAO, was born
04/02/2021
Spain is among the participating countries in the SKA Observatory (SKAO), an intergovernmental organization that will open a new era in radioastronomy. The Minister of Science, Pedro Duque, highlighted it as a milestone that will revolutionize astronomy and other scientific and technological fields. Spanish participation in SKA is led by the IAA-CSIC.

A "magnifying glass" looked at one of the largest known centaurs
03/02/2021
Thanks to a stellar occultation, a research led by IAA-CSIC was able to determine the characteristics of 2002 GZ3, a centaur with a diameter of almost 400 km on its major axis. Known for more than forty years, little information is available about this group of icy objects orbiting the Sun between the orbits of Jupiter and Neptune.

The IAA developed a study showing a decrease in light pollution in Granada during confinement
19/01/2021
Although similar studies were carried out in other countries, this is the only one that obtained results thanks to the combination of observations from satellite and from the ground.

A study of the radio emission of Proxima Centauri, the closest planetary system, opened a new path for the study of exoplanets
14/01/2021
Researchers from the IAA-CSIC led an ambitious radio observation project showing that extrasolar planets can be detected with radio telescopes.
Acces to all entries at: https://www.iaa.csic.es/en/publications

List of publications

INVITED

Dmitry Blinov
Foundation for Research and Technology Hellas. Greece
12/11/2021 - 14/12/2021
31/10/2021 - 11/11/2021

Carolina Casadio
Foundation for Research and Technology Hellas. Greece
12/11/2021 - 14/12/2021
31/10/2021 - 11/11/2021

Arianna Cortesi
Observatório do Valongo. Brasil
08/11/2021 - 08/02/2022
20/09/2021 - 07/11/2021

Ana Karla Díaz Rodríguez
University of Manchester. UK
12/07/2021 - 20/08/2021

Rubén López Coto
Istituto Nazionale di Fisica Nucleare. Italy
01/12/2021 - 31/05/2022
01/04/2021 - 30/06/2021

Joel Sánchez Bermúdez
Universidad Nacional Autónoma de México. Mexico
25/10/2021 - 15/12/2021

SHORT VISITS

Roldán Alonso Cala Barón
Universidad de Granada. Spain
18/05/2021 - 18/05/2021

Miguel Cano González
Universidad de Oviedo. Spain
07/12/2021 - 15/10/2022

Alejandro Manuel Cardesin Moinelo
ESAC. Spain
06/09/2021 - 24/09/2021
02/11/2021 - 03/12/2021

Miguel Pereira Santaella
Centro de Astrobiología, INTA-CSIC. Spain
01/12/2021 - 03/12/2021

Rubén Sánchez Ramírez
Istituto Astrofisica e Planetologia Spaziali. Italy
28/06/2021 - 02/07/2021

CONRAD SCHWANITZ
ETH Zurich. Switzerland
04/10/2021 - 08/10/2021

EFTHALIA TRAIAENOU
Max Planck Institute for Radioastronomy. Germany
12/05/2021 - 15/05/2021

Huib Van Langevelde
Joint Institute for VLBI in Europe. Netherlands
09/11/2021 - 11/11/2021

MACIEK WIELGUS
Max Planck Institute for Radioastronomy. Germany
13/12/2021 - 21/12/2021
In memoriam

José María Jerónimo. Chema in the IAA and Pepe for his family, has been and is an inseparable part of the IAA since his incorporation in 1981. His knowledge in electronics and his good manners of working have been collected in successive space exploration projects among which it is worth mentioning from the development of rocket payloads for the study of the upper atmosphere to his participation in NOMAD-Exomars, through HASI in Huygens and in GIADA, on board Rosetta, and the PLATO mission.

The results of his work are physically present on Earth, Titan, the surface of comet Churyumov-Gerasimenko and on two spacecraft orbiting Mars, but above all they are and will continue to be among those of us who have had the good fortune to have known him and shared a multitude of experiences over these almost 40 years.

Who can offer so much?

José Juan López Moreno
Ad Honorem Professor (IAA-CSIC)