Digital Science Reproducibility and Visibility in Astronomy

José Enrique Ruiz on behalf of the Wf4Ever Team

ESAC FACULTY SEMINAR MADRID, JANUARY 18th 2013

Digital Science - Reproducibility and Visibility in Astronomy Astronomy Research Lifecycle

Astronomy research lifecycle is entirely digital

- Observation proposals
- Data reduction pipelines

- Analysis of science ready data
- Catalogs of objects and data
- Publish process
 - Final data results
 - Experiment in DL ADS/arXiv

Reproducible research is still not possible in a digital world

A rich infrastructure of data (VO) is not efficiently used

A normalized preservation of methodology is needed

Digital Science - Reproducibility and Visibility in Astronomy The next generation of archives

Much wider FoV and spectral coverage

- » / Large volumes for an observed datacube
- » Subproducts are Virtual Data generated on-the-fly

	Low Res		High Res		Extreme Res	
Number	4 Bytes	4B	4 Bytes	4B	4 Bytes	4B
Resolution	2,048 x 2,048	16MB	8,192 x 8,192	268MB	12,288 x 12,288	603MB
Channels	16,384	0.27TB	16,384	4.39TB	16,384	9.8TB
Stokes & Weighting	1	0.27TB	1	4.39TB	4+1	49.5TB

ASKAP Cubes Prof. Kevin Vinsen

Digital Science - Reproducibility and Visibility in Astronomy The next generation of archives

Automated surveys

- » Huge amounts of tabular data
- Services for KDD

Extraction of scientifically relevant information from a multidimensional parameter space

- » Exploration services
- » Anomaly detection
- » Cross-matching data
- » Dimensionality reduction

Digital Science - Reproducibility and Visibility in Astronomy The next generation of archives

» A cloud of Web Services

Archives should evolve from data providers into

- » Virtual data providers
- » Software tasks providers
- » Archives speaking Web Services

Astronomy of multi archives/facilities/wavelength Interconnected and interoperable archives

- » Data -> Virtual Observatory
- » Software Tasks

Process should benefit of the same privileges acquired by data

Preserving the method ensures replication of final results at any moment

Digital Science - Reproducibility and Visibility in Astronomy Efficiency and Reuse

Optimize return on investments made on big facilities

- » Avoid duplication of efforts and reinvention
- » How to discover and not duplicate?
- » How to re-use and not duplicate?
- » How to make use of best practices?
- » How to use the rich infrastructure of data?
- » Intellectual contributions are encoded in softw

More data in archives does not imply more knowledge

- Time has come to go beyond the PDF
- » Expose complete scientific record, not the story
- » Allow easy discovery of methods and tools

Digital Science - Reproducibility and Visibility in Astronomy Reproducibility and The Scientific Method

Benefits

- » Publishing knowledge, not advertising
- » The author, the referee and the re-user
- » Reputation, prestige and respect
- » Higher quality of publications
 - Authors will be more careful
 - Many eyes to check results

Challenges

- » Hard and time consuming
- » Need incentives not rewarded now

Initiatives

- » Elsevier Executable Papers Challenge
- » Open Data / Open Science EU H2020

Barriers to Data and Code Sharing in Computational Science

Survey of Machine Lear	I don't know how	lden, 2010):

Code		Data
77%	Time to document and clean up	54%
52%	Dealing with questions from users	34%
44%	Not receiving attribution	42%
40%	Possibility of patents	-
34%	Legal Barriers (ie. copyright)	41%
-	Time to verify release with admin	38%
30%	Potential loss of future publications	35%
30%	Competitors may get an advantage	33%
20%	Web/disk space limitations	29%

... "Science is being killed by numerical ranking,"[...] Ranking systems lures scientists into pursuing high rankings first and good science second.

SCIENCE METRICS

The value of scientific output is often measured, to rank one nation against another, allocate funds between universities, or even grant or deny tenure. Scientometricians have devised a multitude of 'metrics' to help in these rankings. Do they work? Are they fair? Are they over-used? *Nature* investigates.

▼ Editorial

▼ Features

▼ Opinion

From the archive

between universities, or even grant or deny tenure. Scientometricians have devised a multitude of

From the archive

'metrics' to help in these rankings. Do they work? Are they fair? Are they over-used? Nature

▼ Opinion

investigates.

▼ Editorial

▼ Features

10

View all ▶

5. Cancer: Solving an age-old problem

Nature | 29 February 2012

... an author's h-index can reflect longevity as much as quality — and can never go down with age, even if a researcher drops out of science altogether.

SCIENCE METRICS

The value of scientific output is often measured, to rank one nation against another, allocate funds between universities, or even grant or deny tenure. Scientometricians have devised a multitude of 'metrics' to help in these rankings. Do they work? Are they fair? Are they over-used? *Nature* investigates.

▼ Editorial

▼ Features

▼ Opinion

▼ From the archive

Exploring and understanding scientific metrics in citation

2010 Krapivin et al.

Paper discovery: the social dimension

Digital Science - Reproducibility and Visibility in Astronomy The Wf4Ever Project

EU funded FP7 STREP Project

December 2010 – December 2013

- 1. Intelligent Software Components (ISOCO, Spain)
- 2. University of Manchester (UNIMAN, UK)
- 3. Universidad Politécnica de Madrid (**UPM**, Spain)
- 4. Poznan Supercomputing and Networking Centre (**PSNC**, Poland)
- 5. University of Oxford (**OXF**, UK)
- 6. Instituto de Astrofísica de Andalucía (IAA, Spain)
- 7. Leiden University Medical Centre (**LUMC**, NL)

Digital Science - Reproducibility and Visibility in Astronomy Scientific Workflows

Survey in the domain of astrophysical workflows

- Personal script-based recipes
 - · Python, IDL, Software..
- Multi-archive VO recipes
 - Euro-VO, IVOA...
- Internal group developments
 - GRID, Clusters, Specific knowledge
- Processing pipelines
 - Facilities provide data, comp

ture, tools..

Accessible
Shareable
Reusable
Adaptable
Understandable

Scientific

Insight

- » Clarity (workflows) for re-use and re-purpose vs. automation (pipelines)
- » A black box is not re-usable, cannot be broken into parts
- » Reproducibility vs. industrial paper publishing

Going beyond automation: Organization

		<u> </u>		
1	Location: C:\user\researcn\data		*	
ſ.	Filename A	Date Modified	Size	Туре
	data_2010.05.28_test.dat	3:37 PM 5/28/2010	420 KB	DAT file
	data_2010.05.28_re-test.dat	4:29 PM 5/28/2010	421 KB	DAT file
	data_2010.05.28_re-re-test.dat	5:43 PM 5/28/2010	420 KB	DAT file
	🔡 data_2010.05.28_calibrate.dat	7:17 PM 5/28/2010	1,256 KB	DAT file
	👸 data_2010.05.28_huh??.dat	7:20 PM 5/28/2010	30 KB	DAT file
	8 data_2010.05.28_WTF.dat	9:58 PM 5/28/2010	30 KB	DAT file
	ia data 2010 05 29 agarmob dat	12:37 AM 5/20/2010	30 KB	DAT file

Assistive building Completeness evaluation

Expose experimental context in a structured way in order to be understood

Similar initiatives in Astronomy

- » Semantic curation of digital objects
 - CDS Centre Données Strasbourg
 - US Virtual Astronomical Observatory
 - SAO/NASA ADSLabs

» Workflow users platforms

- Cyber-SKA
-) IceCore
- Montage
- Astro-WISE
- Helio-VO

» Auto descriptive Web Services

- Workflows VO-France
- IVOA: S3, SimDAL, PDL

ADSLabs Initiative

ADO Linked Components

- » Authors
- » Publications
- » Journals
- » Objects SIMBAD
- » Tabular data behind the plots CDS
- » ASCL reference of used software
- » Observing time Proposals
- » Used facilities, surveys or missions

http://labs.adsabs.harvard.edu/

The Incentive

Papers with data links are cited more than those without

Effect of E-printing on Citation Rates in Astronomy and Physics 2006. Edwin A. Henneken et al.

The Incentive

Papers with data links are cited more than those without

Effect of E-printing on Citation Rates in Astronomy and Physics 2006. Edwin A. Henneken et al.

Digital Science - Reproducibility and Visibility in Astronomy The Wf4Ever Project

Community engagement

- » ADASS XXI BoF Scientific Workflows in Astronomy
- » Early contacts in IVOA for the creation of a community of users
- » Interest mailing list in IVOA D workflow@ivoa.net
- » Draft of IVOA Note on Workflows
- » Collaboration with ADSLabs
- » Interested potential collaborators
 - Workflows VO France
 - VAMDC EU FP7 Project
 - Helio VO
 - Spanish VO
- » AstroTaverna Starter Pack
- » Seminars, Webinars, Workshops and Schools

Digital Science - Reproducibility and Visibility in Astronomy The Wf4Ever Project

- » Development of AstroTaverna plugins to access and manage VO data
- » Development Golden Exemplars of astrophysical Workflows and Research Objects that use the Wf4Ever technological support
 - Curation of physical quantities in 1D catalogues
 - Data retrieved from external repositories and stored locally
 - Only local processes for calculations

- > Environment and Modelling from 1D catalogues and 2D images
 - Data retrieved from external repositories (SDSS DR7)
 - Local software and external web services as processes

Only external data and processes

Curation by inspecting propagation of changes in quantities

AMIGA Catalog

Panchromatic properties for a sample of the most isolated nearby galaxies

Curation by inspecting propagation of changes in quantities Multi-workflow Research Object

AstroTaverna: Create, annotate and run a workflow

Registers Provenance Orchestration of Tasks and Dependencies Improves Clarity and Reproducibility

Populate the Research Object and annotate

Add documents and references

Create and explore relations among components

Add schema of the experiment

Publication for later discovery

Curation by inspecting propagation of changes in quantities

- » Taverna 2.4
- » MyExperiment Pack
 - http://www.myexperiment.org/packs/231

Related Publication

The AMIGA sample of isolated galaxies X. A First Look at Isolated Galaxy Colors 2012 A&A 540, A.47

Digital Science - Reproducibility and Visibility in Astronomy Conclusions

How NOT to be a good Astronomer

- 1. Write a obscure paper, do not say clearly how to reproduce the results
- 2. Do things quickly and forget about them once you've submitted the paper
- 3. Be untidy, spread your code and data in a variety of formats, folders and disks
- 4. Do not provide data results, including the plots is just fine
- 5. Practise the "data mine-ing" input data are mine
- 6. Practise the "data flirting" I want you to call me, if you want more
- 7. Always cite the same authors and papers or those that cite you
- 8. Do not reference other resources than published papers, never provide URL links
- 9. Do not search info on Internet with other tools than ADS or arXiv
- 10. Do not contact others, just duplicate and reinvent for your own what you may find
- http://amiga.iaa.es/p/212-workflows.htm
- http://www.wf4ever-project.org
- jer@iaa.es