High-resolution radio imaging of young supernovae

Miguel Á. Pérez-Torres
(torres@iaa.es)

Instituto de Astrofísica de Andalucía (Granada, Spain)

J.M. Marcaide A. Alberdi
E. Ros J.C. Guirado
L. Lara F. Mantovani
C.J. Stockdale K. W. Weiler
P.J. Diamond S.D. Van Dyk
P. Lundqvist N. Panagia
I. Shapiro R. Sramek
<table>
<thead>
<tr>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>SN1979C in M100</td>
<td>Strong deceleration</td>
</tr>
<tr>
<td>SN1986J in NGC891</td>
<td>Highly distorted radio shell</td>
</tr>
<tr>
<td>SN2001gd in NGC5033</td>
<td>First VLBI detection</td>
</tr>
<tr>
<td></td>
<td>(Pérez-Torres et al. in preparation)</td>
</tr>
</tbody>
</table>
SN1979C

- SN1979C in M100 (D= 16.1 Mpc)
- $t_{\text{explosion}} = \text{April 4, 1979}$
- $V_{\text{expansion}} = 9200$ km/s at around $t = 45$ days
- Type II SN-L
- Progenitor: binary system
- $M_{\text{progen}} \sim 17-18 \ M_{\text{sun}}$ (Van Dyk et al. 1999)
- Radio emission interpreted within the minishell model (Chevalier 1982)
Previous VLBI observations

- VLBI observations 5 years after the explosion (Bartel et al. 1985)
- Source structure was not resolved by VLBI
- Observations consistent with undecelerated expansion ($m = 1.0; R \sim t^m$) for the first 5 years!!
VLA radio measurements

(From Montes et al. 2000)

$\frac{dM}{dt} \sim 10^{-4} M_{\text{sun}}/\text{yr}$

Is flux increasing?
VLBI observations at 18 cm, ~20 yr after explosion

4 June 1999

(Marcaide et al. 2002)
Angular size of SN1979C

- Optically thick disk:
 4.57 +/- 0.25 mas

- Optically thin shell of width 0.3*R_out:
 3.60 +/- 0.17 mas

- Optically thin ring:
 3.10 +/- 0.14 mas

- Best model: Thin shell

1 mas @ 16.1 Mpc ~ 0.08 pc
Strong deceleration of SN1979C

\[R \propto t^m; \quad m = 0.62^{+0.22}_{-0.17} \]

(from Marcaide et al. 2002)
\(t_{\text{break}} = 6 \pm 2 \text{ yr} \)

- Strong deceleration \(\rightarrow M_{\text{swept}} \geq M_{\text{env}} \)
- \(v_{\text{wind}} = 10 \text{ km/s} \)
- \(\frac{dM}{dt} = 1.2 \times 10^{-4} M_{\odot}/\text{yr} \)
- \(\rho_{\text{csm}} \sim r^{-s} ; s = 2 \)

- \(M_{\text{swept}} = 1.6 M_{\odot} \geq M_{\text{env}} \)
- \(M_{\text{env}} \leq 0.9 M_{\odot} \)
- Binary star scenario favoured

From VLBI observations taken 20 yrs after the explosion:

SNI979C in a strong decelerated phase
- \(m = 0.62 \) (strong interaction with CSM)
- \(t_{\text{break}} = 6 \pm 2 \text{ yr} \)
- \(M_{\text{swept}} = 1.6 M_{\odot} \)
- \(M_{\text{env}} = 0.9 M_{\odot} \)
- Binary star scenario favoured
SN1986J

- SN1986J in NGC891 (D \(\sim 9.6\) Mpc)
- Lumin @ 6 cm \(\sim 8^{*}\)SN1979C, \(~13^{*}\)SN1993J
- It probably exploded at the end of 1982
- MSM of progenitor \(\sim 20 - 30\) M\(_{\text{sun}}\)
- Type II supernova
- Strong mass loss: \(dM/dt \geq 2 \times 10^{-4}\) M\(_{\text{sun}}\)/yr
Previous VLBI observations of SN1986J

VLBI @ 3.6 cm in 1988.74
($t_{\text{exp}} \sim 5.7$ yr)

(Bartel et al. 1991)
NGC891 @ 6cm (VLA, Feb. 1999)

Nucleus

SN1986J with VLBI
Protrusions?

Explosion Center?

Beam = 1.3 x 0.9 mas

1 mas @ 9.6 Mpc ~ 0.05 pc
VLBI on SN1986J

- Mean angular size of ~ 4.7 mas ~ 0.22 pc => v ~ 6300 km/s between 1988.74 and 1999.14
- R ~t^m, m = 0.90 +/- 0.06 (very close to free expansion)
- Anisotropic brightness distribution: shell structure likely due to a collision with a clumpy, or filamentary, wind

- For a standard v_w= 10 km/s, SN1986J is sampling the CSM at time ~ 11000 yr; dM/dt ~ 2 x 10^{-4} M_{Sun}/yr => M_{swept} ~ 2.2 M_{Sun}
- Momentum conservation implies that M_{env} >= 12 M_{Sun}
- Single star scenario is favoured

If equipartition betw/ fields and particles, then B_{min} ~ 2-90 mG compression of B_{wind} not enough => turbulent amplification of B?
SN2001gd

NGC 5033

Prediscovery image

Image taken on 13 Jan 2002
SN2001gd: a SN1993J-like event

SN2001gd spectrum on 4 Dec 2001 (Matheson et al. 2001)

Comparison spectra SN2001gd/SN1993J (from Matheson et al. 2001)
First radio detection of SN2001gd

8 Feb 2002
\(t_{\text{exp}} \sim 150 \text{ days} \)

(from Stockdale et al. 2002)

\(L_{6 \text{ cm peak}} \sim 3 \times 10^{27} \text{ erg/s/Hz} \)
First VLBI detection of SN2001gd

VLBI @ 3.6 cm

26 June 2002
t_{\text{exp}} \sim 300 \text{ days}

Source structure unresolved

(Pérez-Torres et al., in preparation)
Angular estimates for SN2001gd

Optically thick source:
\[a = 0.37 \pm 0.02 \text{ mas} \]
\[b/a = 0.45 \pm 0.22 \]

Optically thin sphere:
\[0.39 \pm 0.01 \text{ mas} \]

Optically thin ellipsoid:
\[a = 0.41 \pm 0.02 \text{ mas} \]
\[b/a = 0.45 \pm 0.21 \]

Distance

<table>
<thead>
<tr>
<th>(Mpc)</th>
<th>Inferred velocities (1000 km/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.5</td>
<td>14.4 -- 16.3</td>
</tr>
<tr>
<td>21.6</td>
<td>23 -- 26</td>
</tr>
</tbody>
</table>

Beam = 1.23 \times 0.51 \text{ mas}

1 \text{ mas} @ 21.6 \text{ Mpc} \sim 0.11 \text{ pc}
Summary

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance (Mpc)</td>
<td>16.1</td>
<td>9.6</td>
<td>21.6</td>
<td>3.63</td>
</tr>
<tr>
<td>Time since explosion (yr)</td>
<td>20.1</td>
<td>~16</td>
<td><1</td>
<td>8.6</td>
</tr>
<tr>
<td>(\frac{L_{\text{6cm}}}{L_{\text{6cm SN1993J}}^{\text{peak}}})</td>
<td>~1.6</td>
<td>~13</td>
<td>~2</td>
<td>1</td>
</tr>
<tr>
<td>Resolved by VLBI?</td>
<td>Not yet</td>
<td>Yes</td>
<td>Not yet</td>
<td>Yes</td>
</tr>
<tr>
<td>Optically thin phase?</td>
<td>Yes</td>
<td>Yes</td>
<td>Likely yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Radio brightness structure</td>
<td>shell</td>
<td>distorted shell</td>
<td>---</td>
<td>~smooth shell</td>
</tr>
<tr>
<td>(\frac{dM}{dt}) / ((M_{\odot})/yr)</td>
<td>~10^{-4}</td>
<td>~2 x 10^{-4}</td>
<td>?</td>
<td>~5 x 10^{-5}</td>
</tr>
<tr>
<td>Deceleration parameter (m)</td>
<td>0.62</td>
<td>0.90</td>
<td>1.0?</td>
<td>~0.83</td>
</tr>
<tr>
<td>Asymmetric expansion?</td>
<td>No</td>
<td>Yes</td>
<td>?</td>
<td>No (<5%)</td>
</tr>
<tr>
<td>Circumstellar medium</td>
<td>---</td>
<td>clumpy</td>
<td>?</td>
<td>~smooth</td>
</tr>
<tr>
<td>(M_{\text{swept}} / M_{\odot})</td>
<td>1.6</td>
<td>2.2</td>
<td>?</td>
<td>~0.4</td>
</tr>
<tr>
<td>(M_{\text{env}} / M_{\odot})</td>
<td>0.9</td>
<td>12</td>
<td>?</td>
<td>~0.2-0.4</td>
</tr>
<tr>
<td>Explosion scenario</td>
<td>Binary</td>
<td>Single</td>
<td>?</td>
<td>Binary</td>
</tr>
<tr>
<td>Magnetic field amplification</td>
<td>Turbulent</td>
<td>Turbulent</td>
<td>?</td>
<td>Turbulent</td>
</tr>
<tr>
<td>(t_{\text{break}}) (years)</td>
<td>6 +/- 2</td>
<td>----</td>
<td>----</td>
<td>~1</td>
</tr>
</tbody>
</table>
VLBI data and superimposed model of an optically thin shell of angular diameter 4.7 mas
Magnetic Field in SN1986J

- If equipartition between fields and particles
- \(E_{\text{min}} \sim (2-90) \times 10^{48} \text{ erg} \)
- \(B_{\text{min}} \sim 13-93 \text{ mG}; \ B_{\text{wind}} \sim 0.32 \text{ mG at } R=3.4 \times 10^{17} \text{ cm} \)
- Compression of \(B_{\text{wind}} \) not enough => turbulent amplification of \(B \)?
SN2001gd @ 3.6 cm

VLBI data and superimposed model