El tamaño del núcleo de las estrellas determina cuánto combustible está disponible y, por lo tanto, cómo evolucionarán y cuánto durarán sus vidas
Las estrellas extraen su energía de las reacciones de fusión que tienen lugar en su núcleo, una región con una densidad y temperatura extremas. Y en los núcleos de las estrellas más masivas puede ocurrir un fenómeno, denominado "rebosamiento del núcleo", que modifica drásticamente su camino evolutivo, principalmente en lo que concierne a su tiempo de vida. Ahora, un estudio encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha medido la intensidad de este efecto y ha establecido una clara dependencia con la masa de la estrella.
Para determinar cuánto tiempo vive una estrella es necesario conocer el tipo de caldera nuclear estelar y el tipo de reacciones termonucleares que se producen en ella. Las estrellas producen energía a través de la fusión de hidrógeno en helio, pero las condiciones para que se produzca esta reacción solo se hallan presentes en el núcleo, de modo que el tamaño de este determinará cuánto combustible tiene disponible la estrella y, por extensión, cuánto vivirá. Y el tamaño del núcleo de las estrellas depende de cómo se transporta energía hacia las regiones externas.
En las estrellas con más de 1,3 veces la masa del Sol la energía que se produce en el núcleo se desplaza hacia el exterior por convección, similar al burbujeo del agua hirviendo. Son las células convectivas las que transportan la energía y, tradicionalmente, se ha recurrido a una estimación del tamaño del núcleo mediante un criterio que se basa en la aceleración de las mismas: cuando esta es nula, el movimiento cesa, lo que fijaría el límite del núcleo.
"Sin embargo, por inercia, dichas células todavía pueden recorrer un camino mayor que el dictado por este criterio, resultando en un núcleo mayor. Como consecuencia habrá más combustible disponible, alargando la vida de las estrellas, entre otros detalles”, apunta Antonio Claret, investigador del IAA-CSIC que ha conducido la investigación.
Podemos hallar una analogía de este fenómeno, denominado “rebosamiento del núcleo” (del inglés core overshooting), en una hoguera en el campo: en principio, la hoguera solo tendrá lugar donde se halla la leña pero, debido a los movimientos térmicos o al viento, el fuego puede alcanzar el follaje en las inmediaciones de la hoguera.
"Dado que el rebosamiento del núcleo altera tanto la evolución como el tiempo de vida de las estrellas masivas, la determinación de su intensidad y su posible dependencia con respecto a la masa de la estrella es uno de los desafíos de la astrofísica moderna -señala Claret (IAA-CSIC)-. Para ello debemos disponer de datos muy precisos que podamos comparar con los cálculos teóricos. En el pasado se han realizado algunos intentos pero no se han obtenido resultados concluyentes debido principalmente a la escasez de datos observacionales fiables”.
En el presente trabajo se han seleccionado treinta y tres estrellas binarias eclipsantes situadas en nuestro entorno así como en las Nubes de Magallanes, dos galaxias satélite de la Vía Láctea. Se trata de un tipo de sistemas estelares binarios que, debido a su orientación con respecto a nosotros, se eclipsan cíclicamente, y que son las fuentes más fiables de datos estelares como masas, radios o temperaturas (con un error medio de entre el 1 y el 5%). Los autores compararon los datos con los cálculos teóricos de modelos evolutivos para determinar los valores del rebosamiento del núcleo y, por fin, se ha llegado a una conclusión clara.
"Se ha encontrado una relación entre el rebosamiento del núcleo con la masa estelar mucho más clara que en trabajos anteriores. Hemos medido un aumento muy significativo del rebosamiento del núcleo en las estrellas cuya masa oscila entre 1,3 y 2 masas solares, seguido de un cambio mucho más suave para estrellas más masivas”, apunta Claret (IAA-CSIC). Además, los investigadores han descartado la influencia de otros factores en este efecto, como el estadio evolutivo de la estrella.
Las conclusiones de este trabajo tienen implicaciones directas que van desde el estudio de síntesis de poblaciones estelares hasta la formación de objetos compactos como las enanas blancas, estrellas de neutrones o agujeros negros, producto del agotamiento del combustible en los núcleos estelares.
A. Claret and G. Torres. "The dependence of stellar core overshooting on stellar mass".
Astronomy & Astrophysics, vol 592, August 2016 DOI: http://dx.doi.org/10.1051/0004-6361/201628779
Instituto de Astrofísica de Andalucía (IAA-CSIC)
Unidad de Divulgación y Comunicación
Silbia López de Lacalle - sll[arroba]iaa.es - 958230532
http://www.iaa.es
http://divulgacion.iaa.es