Atmospheric Effects of >30-keV Energetic Electron Precipitation in the Southern Hemisphere Winter during 2003

DOI: 
10.1029/2019JA026868
Publication date: 
18/11/2019
Main author: 
Pettit J.M.
IAA authors: 
Funke, B.
Authors: 
Pettit J.M., Randall C.E., Peck E.D., Marsh D.R., van de Kamp M., Fang X., Harvey V.L., Rodger C.J., Funke B.
Journal: 
Journal of Geophysical Research: Space Physics
Refereed: 
Yes
Publication type: 
Article
Pages: 
8138-8153
Abstract: 
The atmospheric effects of precipitating electrons are not fully understood, and uncertainties are large for electrons with energies greater than ~30 keV. These electrons are underrepresented in modeling studies today, primarily because valid measurements of their precipitating spectral energy fluxes are lacking. This paper compares simulations from the Whole Atmosphere Community Climate Model (WACCM) that incorporated two different estimates of precipitating electron fluxes for electrons with energies greater than 30 keV. The estimates are both based on data from the Polar Orbiting Environmental Satellite Medium Energy Proton and Electron Detector (MEPED) instruments but differ in several significant ways. Most importantly, only one of the estimates includes both the 0° and 90° telescopes from the MEPED instrument. Comparisons are presented between the WACCM results and satellite observations poleward of 30°S during the austral winter of 2003, a period of significant energetic electron precipitation. Both of the model simulations forced with precipitating electrons with energies >30 keV match the observed descent of reactive odd nitrogen better than a baseline simulation that included auroral electrons, but no higher energy electrons. However, the simulation that included both telescopes shows substantially better agreement with observations, particularly at midlatitudes. The results indicate that including energies >30 keV and the full range of pitch angles to calculate precipitating electron fluxes is necessary for improving simulations of the atmospheric effects of energetic electron precipitation. ©2019. American Geophysical Union. All Rights Reserved.
Database: 
SCOPUS
ADS
URL: 
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85074556829&doi=10.1029%2f2019JA026868&partnerID=40&md5=766b89c5c2510223af7f628ba4cf71cc
ADS Bibcode: 
2019JGRA..124.8138P
Keywords: 
electron precipitation; geomagnetic storms; mesosphere; middle atmosphere; NOx production; WACCM