The Quenched Satellite Population Around Milky Way Analogs

DOI: 
10.1093/mnras/stad2208
Publication date: 
31/07/2023
Main author: 
Karunakaran, Ananthan
IAA authors: 
Karunakaran, Ananthan
Authors: 
Karunakaran, Ananthan;Sand, David J.;Jones, Michael G.;Spekkens, Kristine;Bennet, Paul;Crnojević, Denija;Mutlu-Pakdı̇l, Burçı̇n;Zaritsky, Dennis
Journal: 
Monthly Notices of the Royal Astronomical Society
Publication type: 
Article
Pages: 
5314
Abstract: 
We study the relative fractions of quenched and star-forming satellite galaxies in the Satellites Around Galactic Analogs (SAGA) survey and Exploration of Local VolumE Satellites (ELVES) program, two nearby and complementary samples of Milky Way-like galaxies that take different approaches to identify faint satellite galaxy populations. We cross-check and validate sample cuts and selection criteria, as well as explore the effects of different star-formation definitions when determining the quenched satellite fraction of Milky Way analogs. We find the mean ELVES quenched fraction (&lt;QF&gt;), derived using a specific star formation rate (sSFR) threshold, decreases from ~50 % to ~27 % after applying a cut in absolute magnitude to match that of the SAGA survey (&lt;QF&gt;<SUB>SAGA</SUB> ~9 %). We show these results are consistent for alternative star-formation definitions. Furthermore, these quenched fractions remain virtually unchanged after applying an additional cut in surface brightness. Using a consistently-derived sSFR and absolute magnitude limit for both samples, we show that the quenched fraction and the cumulative number of satellites in the ELVES and SAGA samples broadly agree. We briefly explore radial trends in the ELVES and SAGA samples, finding general agreement in the number of star-forming satellites per host as a function of radius. Despite the broad agreement between the ELVES and SAGA samples, some tension remains with these quenched fractions in comparison to the Local Group and simulations of Milky Way analogs.
Database: 
ADS
URL: 
https://ui.adsabs.harvard.edu/#abs/2023MNRAS.524.5314K/abstract
ADS Bibcode: 
2023MNRAS.524.5314K
Keywords: 
galaxies: dwarf;galaxies: star formation;galaxies: evolution;galaxies: formation;(galaxies:) Local Group