Sulfur dioxide (SO<SUB>2</SUB>) as observed by MIPAS/Envisat: temporal development and spatial distribution at 15-45 km altitude

DOI: 
10.5194/acpd-13-12389-2013
Publication date: 
01/05/2013
Main author: 
Höpfner, M.
IAA authors: 
Funke, B.
Authors: 
Höpfner, M.;Glatthor, N.;Grabowski, U.;Kellmann, S.;Kiefer, M.;Linden, A.;Orphal, J.;Stiller, G.;von Clarmann, T.;Funke, B.
Journal: 
Atmospheric Chemistry & Physics Discussions
Publication type: 
Article
Volume: 
13
Pages: 
12389-12436
Abstract: 
We present a climatology of monthly and 10° zonal mean profiles of sulfur dioxide (SO<SUB>2</SUB>) volume mixing ratios (vmr) derived from MIPAS/Envisat measurements in the altitude range 15-45 km from July 2002 until April 2012. The vertical resolution varies from 3.5-4 km in the lower stratosphere up to 6-10 km at the upper end of the profiles with estimated total errors of 5-20 pptv for single profiles of SO<SUB>2</SUB>. Comparisons with few available observations of SO<SUB>2</SUB> up to high altitudes from ATMOS, for a volcanically perturbed situations from ACE-FTS and, at the lowest altitudes, with stratospheric in-situ observations reveal general consistency of the datasets. The observations are the first empirical confirmation of features of the stratospheric SO<SUB>2</SUB> distribution which have only been shown by models up to now: (1) the local maximum of SO<SUB>2</SUB> at around 25-30 km altitude which is explained by the conversion of carbonyl sulfide (COS) as the precursor of the Junge layer, and (2) the downwelling of SO<SUB>2</SUB> rich air to altitudes of 25-30 km at high latitudes during winter and its subsequent depletion on availability of sunlight. This has been proposed as the reason for the sudden appearance of enhanced concentrations of condensation nuclei during Arctic and Antarctic spring. Further, the strong increase of SO<SUB>2</SUB> to values of 80-100 pptv in the upper stratosphere through photolysis of H<SUB>2</SUB>SO<SUB>4</SUB> has been confirmed. Lower stratospheric variability of SO<SUB>2</SUB> could mainly be explained by volcanic activity and no hint for a strong anthropogenic influence has been found. Regression analysis revealed a QBO (quasi-biennial oscillation) signal of the SO<SUB>2</SUB> time series in the tropics at about 30-35 km, a SAO (semi-annual oscillation) signal at tropical and subtropical latitudes above 32 km and annual periodics predominantly at high latitudes. Further, the analysis indicates a correlation with the solar cycle in the tropics and southern subtropics above 30 km. Significant negative linear trends are found in the tropical lower stratosphere, probably due to reduced tropical volcanic activity and at southern mid-latitudes above 35 km. A positive trend is visible in the lower and middle stratosphere at polar to subtropical southern latitudes.
Database: 
ADS
URL: 
https://ui.adsabs.harvard.edu/#abs/2013ACPD...1312389H/abstract
ADS Bibcode: 
2013ACPD...1312389H